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ABSTRACT 

Archaea were not long ago included as a particular domain in the tree of life. This vast 

and unexplored domain requires a plethora of techniques aimed to produce reliable 

inferences on it since not much information has been annotated. The objective of this 

thesis is to create a bioinformatics pipeline that encounters promoters in unannotated 

genomes of archaea. To perform such task, the conservation reported in the binding site 

of specific transcription factor proteins is considered in order to draw a profile of 

promoter-like sequences derived from experimentally validated promoters of the archaea 

H. volcanii, S. solfataricus, and T. kodakarensis. Additionally, the conserved aspect of 

these organisms is employed is a classification task based on statistics and artificial neural 

networks. The results obtained in this thesis are displayed in the form of two scientific 

articles. Where in the first, the binding site of transcription factor proteins that assist 

RNAP binding was located even in promoter sequences that lack the canonical binding 

sites as well as unannotated organisms. Secondly, a combination of statistics and artificial 

neural network classification has succeeded in classifying archaeal promoters in a rate > 

90%, which has shown a satisfactory way to deliver annotation upon sequences whose 

genome is not fully explored. 
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1 INTRODUCTION 

The inclusion of the archaeal domain as a separate branch in the tree of life is recent 

(Woese, 1977). Since then, archaeal organisms have been sequenced and their 

information has become available. For a long time, archaea held the title of being 

extremophile organisms due to their abundance in places such as hot thermal vents, 

environments with a high salt concentration, freezing polar temperatures, acidic and 

alkaline waters, and other unfavorable conditions for life. However, new discoveries have 

suggested archaea are very abundant and found in basically every ecosystem of this planet 

(DeLong et al, 1994). There may also be inter-planetary evidence of these organisms 

(Maus et al, 2020). Nonetheless, archaea are reported to live in a mutualistic relation with 

other living beings, since they are found in the human digestive system, which helps to 

get rid of excessive hydrogen by converting it into methane (Nkamga, 2017). 

Due to many archaea being found in extreme environments, their cultivation on a 

laboratory is hampered (Sun et al, 2020). Thus, in silico studies have gained attention and 

became to coexist with experimental approaches, facilitating hypotheses formulation and 

testing. Due to the data availability, a computational approach favors a preliminary 

analysis, decreasing the amount of experimental research to be done, which shrink costs 

and time on scientific research (Kuok et al, 2017).  

Today, there is an estimated number of one nonillion (1x1027) prokaryotic organisms, 

which all have complex cellular functions. Moreover, there have been reports that 

extensively explored the relationship between microorganisms’ communities and their 

impact on shaping a suitable Earth (Hallam, 2019).  

Therefore, through the unprecedented technological advances that are being 

experienced today, the genome of archaea might be better explored and its information 

extracted. This study aims to combine technological novelties in order to deliver a higher 

quality of genome annotation in the genome of archaea. 
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2 OBJECTIVES 
 
2.1 GENERAL OBJECTIVE 

The goal of this thesis is to create a pipeline that encompasses supervised learning 

and statistics to be used to annotate archaeal promoter elements. 

 

2.2 SPECIFIC OBJECTIVES 

• Capture signals that distinguish promoter and non-promoter sequences in archaeal 

genomes. 

• Explore the genome of archaea apart from consensual sequences by codifying 

genetic information into numeric attributes. 

• Classify archaeal promoters through an Artificial Neural Network approach. 

• Classify archaeal promoters through a statistical model. 

• Locate promoters in unannotated archaea. 
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3 LITERATURE OVERVIEW 

3.1 THE EVOLUTION OF ARCHAEA 

Archaea are old. Carbon tracing techniques date these organisms to 2.7 million of 

years ago. This tracking measured the origin of methane whose origin is biological (i.e. 

methanogens archaea) (Gribaldo and Brochier-Armanet, 2006). Evolutionary traits place 

archaea in-between eukaryotes and bacteria (Gupta, 1998). A pre-archaea-tree of life 

would indicate that bacteria gave origin to eukaryotes, where they both shared a last 

universal common ancestor (LUCA). Although, the Woese and Fox (1977) inclusion of 

archaea in the tree of life changed this model. In this sense, the tree of life (depicted in 

Figure 3-1) started with a LUCA, which gave origin to both bacteria and archaea. 

Resemblances of these two domains have been studied (Lopez et al. 1999; Aravind, 1999; 

Zivanovic, 2002). Eukaryotes would arise only after evolutionary events in bacteria and 

archaea. Indeed, there are evidences that define many archaeal regulatory mechanisms as 

simplified version of the eukaryotic counterparts (Olsen and Woese, 1996).  

Archaea are, functionally, placed in the middle of the other two domains, sharing 

aspects with both. Evolutionists still discuss about details, especially due to the difficulty 

of cultivating archaea (Forterre and Philippe, 2002). The correct tracing of the tree of life 

and, consequently, the discovery of the exact cell that gave origin to eukaryotes is one of 

the most enigmatic questions in biology; and archaea could play a major role on it (Imachi 

et al, 2020). 

 

Figure 3-1: The three domains of life 
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3.2 ARCHAEA AS THE THRID DOMAIN 

Until 1987, every single living organism in this planet would either fit in one of 

two domains: eukaryotes (organisms that possess a nuclear membrane, preventing the 

genetic material from wandering freely in the cytoplasm) and, prokaryotes (unicellular 

beings that do not own a nuclear membrane, i.e., the deoxyribonucleic acid (DNA) has 

no physical barrier within the cell) (Woese, 1987). At the time, the prokaryotic organisms 

were divided into Eubacteria (true bacteria) and Archaeabacteria (Gribaldo and Brochier-

Armanet, 2006). This latter lineage of "bacteria" was known to inhabit extreme 

environments. This dichotomy consented by biologists at the time had never seemed to 

be static. It need to be remembered that once bacteria were considered plants (Woese and 

Fox, 1977).  

Following the idea that the ultimate record of the evolutionary history of any 

organism is its genome (Zuckerkandl and Pauling, 1965), the phylogenetic tree of all 

living beings drastically changed in 1987. Woese and Fox (1987) proposed the existence 

of a third domain of life that would differ from the other two. This change of paradigm 

in microbiology encompassed an analysis done by the researcher who found the 

ribosomal RNA (rRNA) of the Archaebacteria to be different from Eubacteria. Since 

rRNA is a well-conserved molecule found in every living being, it conveys to be a great 

phylogenetic marker. 

The findings of Woese and Fox (1977) portrayed a unique paradigm. At the time, 

methanogens (prokaryotes that produce methane as a metabolic byproduct) were 

considered to be bacteria. The organisms mapped at the time to be archaebacterial were 

methanogens only. As time went through, the list of the representatives of this third 

domain substantially grew. After owning only methanogens, some extremophile 

organisms were included (i.e., organisms that inhabit acidic, alkaline, sulfurous, highly 

saline, and high-temperature environments). Then, microbiologists found that archaea 

were even more diverse. Being organisms that are widely distributed in nature and are 

prevalent in not so extreme habitats such as soil and oceans, turning archaea as significant 

contributors to the global carbon and nitrogen cycle (Gribaldo and Brochier-Armanet, 

2006). 
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3.3 THE TRANSCRIPTION PROCESS IN ARCHAEA 

The central dogma in molecular biology revolves around three distinct processes: 

replication, transcription and, translation, as Figure 3-2 shows. These processes are 

critical for the maintenance of the cellular functions in any cellular organism. In general 

terms, independently of the organism in question, the trace of genetic information starts 

when cells multiply, a copy the genetic material has to be transferred to the daughter cells. 

This process is known as replication. To convey gene expression, the information stored 

in the DNA is used to form an intermediate molecule, the ribonucleic acid (RNA). One 

of the reasons for this extra molecule to be present is to help to preserve DNA, preventing 

it from leaving the cell. Finally, after an RNA molecule is formed, it leaves the cell and 

is translated into a peptide chain, which will result in a functional protein (Krebs et al, 

2017).  

 

Figure 3-2: The central dogma of molecular biology (adapted from Watson and Crick, 
1953). 

 
The DNA is described as an information repository, needed to build RNA and, 

through it, a protein that has a function related to cell structure, regulation or catalysis. 

There are several mechanisms that ensure the correct genes are expressed in the right 

moment. This correct expression of certain genes grants the cell the ability of having its 

necessities supplied (Browning and Busby, 2016). 
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The transcription process is essential to life at any domain. This process is 

responsible for converting DNA into RNA. The element that orchestrates this is the 

enzyme RNA polymerase (RNAP). This multi subunit enzymatic complex is required to 

carry out transcription in the three domains of life. Since evolution has acted upon RNAP, 

its function is different among archaea, bacteria and, eukaryotes but, the final product of 

the enzyme is the same - RNA. However, the path that leads to the formation of mRNA 

is quite different in the tree of life. Bacterial RNAP alone is not capable of recognizing 

promoter elements and, consequently, genes. It employs one of its subunits to identify 

promoter sequences along the DNA strand. The s subunit helps RNAP recruitment in 

bacteria (Krebs et al, 2017).  

The eukaryotic/archaeal transcription resemble each other. In fact, archaea 

transcription is a simplified version of eukaryotic transcription, resembling the 

components of eukaryotic RNAP II (Gehring et al, 2016). The first drawn parallel among 

the likeness of transcription machinery of these two domains occurred when Zillig et al, 

(1979) analyzed the subunit composition of archaeal RNAP. It ended up being far more 

complex than the bacterial counterparts, while archaea have at least 10 subunits, bacteria 

have only five. Further analysis (Langer et al, 1995) compared eukaryotic genes that 

encode RNAP subunits and found them to be homologous to archaea. 

The archaeal RNAP on its own is not capable of efficiently recognize a promoter 

element (Bell and Jackson, 2001) and then, starting RNA synthesis. There are two basal 

transcription factors that are minimally required to recruit RNAP and continue the 

transcription stage: i) a TATA-binding protein (TPB) and, ii) a Transcription Factor B 

protein (TFB).  

There are three steps in which the transcription in archaea happens. The first, the 

initiation (Figure 3-3) complex, starts with the recruitment of RNAP to the DNA. This is 

mediated by the presence of a TBP and a TFB protein. The archaeal RNAP is generally 

found within 12 subunits (A’, A’’, B’, B’’, D, N, L, P, H, K, F, E). From which, the two 

A subunits recruit RNAP to the promoter element (Werner, 2007). Additional functions 

of the other subunits are included in Table 3-1. During the initiation, there is a pre-open 

complex (PIC), whose function is to open the DNA double helix allowing RNA synthesis. 
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Figure 3-3: Initiation, elongation and, termination of transcription. 

 
 

 

Table 3-1: Functions of the 12 RNAP subunits in archaea (Werner, 2007). 

RNAP subunit Function Basal factor interactions 

A B DNA loading, stability of elongation 

complex. 

TFE, Spt4/5 

H A Downstream duplex DNA binding TFS domain II 

F/E Open complex formation, RNAP binding TFE 

A RNAP recruitment to promoter TFB 

A NTP entry, backtracked RNA exit TFS domain III 

A/B Mg binding, polymerization and nucleolysis TFS domain III 

S Substrate loading, catalysis, translocation TFS, TFB 

A Nucleic acid strand handling Spt4/5 

  

Once RNAP is attached and DNA is unwound, the elongation process takes place. 

During it, RNAP changes its initiation subunits to elongation subunits. The two RNAP 

subunits that had been experimentally tested to function during archaea transcription are 

Spt4 and Spt5 (Gehring et al, 2016). Then, RNAP reads the DNA template strand and 
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adds nucleotides to the 3' end of the growing chain (Figure 3-3 – Elongation). It is 

interesting to point that the RNA formation varies among organisms. While E. coli has 

~60 nucleotides (Vogel and Jansen, 1994) added per second, the model eukaryotic 

RNAPII varies between 1.7 – 33 nucleotides per second (Clancy, 2008). These two 

organisms thrive at 37°C. No measurements have been made upon archaea sequences so 

far.  

The lack of cell nucleus, which capsules the genetic material, removes the presence 

of a physical barrier for archaeal cells. Hence, the genetic material has firstly to be coded 

into a messenger RNA (mRNA), so it can leave the nucleon. Only after this, ribosomes 

will start the translation process. On the other hand, nucleus-lacking cells are submitted 

through a process defined as coupled transcription and translation, where these two 

process happen simultaneously. There is still a lack of studies regarding the translation 

occurring when mRNA is not fully formed. However, evidences show that archaea make 

use of exploitation in regulatory mechanisms due to their limited genome size (French et 

al, 2007). 

Finally, the termination process occurs when RNA is synthesized and RNAP is 

released. This process is characterized by RNAP failing to maintain contact with the DNA 

(Figure 3-3 – Termination).  The loss of stability between DNA-RNA is explained many 

factors, including different sets of nucleotides that are more prevalent during termination 

(Gehring et al, 2016). The RNAP subunit involved in termination is Spt5 (Santangelo and 

Reeve, 2006). 

One important remark regarding the transcription process in prokaryotic beings is 

the way that mRNA synthetization and its translation occurs. Indeed, the term prokaryotic 

has arisen many misconceptions. This term is not treated anymore as a synonym for 

bacteria (Pace, 2006).  

 

3.4 ARCHAEAL PROMOTER ELEMENTS    

Key elements to convey the RNA transcription are the promoter sequences, they 

are evenly found in organisms sprung across the domains of life. These DNA segments 

are located upstream the Transcription Start Site (TSS), or +1. The promoter element is 

responsible for mediating the interaction between RNAP and DNA (Krebs et al. 2017). 

The three domains of life present uniqueness in their transcription machinery (Gehring et 

al. 2016). The smaller genome of archaea and bacteria requires a more complex 

orchestration of regulators. Indeed, the number of open-reading frames (ORFs) in some 
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archaeal genomes tends to be more significant than the number of promoters itself 

(Kooning and Wolf, 2008).  

A promoter sequence will forward a conservation of its base-pairs (Yella and 

Bansal, 2017). In this sense, the start of transcription in archaea starts with a TATA-box 

being recognized by the basal transcription factor TBP protein at approximately 30 base 

pairs (bp) upstream the TSS. This machinery is no different when comparing archaea and 

eukaryotic organisms (Blombach and Grohman, 2017). When TBP has attached the 

archaeon promoter’s TATA, there is the recruitment of a second basal transcription factor, 

a Transcription Factor B (TFB), which helps in the stabilization of TBP by saddling it in 

two opposing extremities. Alongside the TATA-box (i.e. a set of wTTATwww 

nucleotides), there is a region named B-recognition element (BRE) and a Proximal 

Promoter Element (PPE), which are shorter sets of nucleotides composed by ssnAA and 

TAC, respectively (Martinez et al, 2017). These two transcription factors acting together 

are sufficient to start archaeal transcription in a way that TBP recognizes the TATA-box 

and recruits TFB. A third transcription factor (Transcription Factor E, which has 

eukaryotic homology) has been reported to aid the PIC formation in archaea. However, it 

is not clear if its function is associated to transcription initiation or other transcription 

activities. (Gehring et al, 2016).  

What is clear is the transcription machinery being shared between archaea and 

eukaryotes. Indeed, the archaea is known to have a simplified version of its eukaryotic 

counterpart (Gehring et al. 2016). What has been reported to encompass the core promoter 

region in eukaryotes is a sequence containing approximately 100 nucleotides (50 

upstream to 50 downstream). This sequence transcribes all protein-coding genes (Haberle 

and Stark, 2018), defined as the core promoter. In Figure 3-4, a scheme of the conserved 

sites necessary to start transcription in archaea is depicted: TATA-box and BRE. These 

regions encompass the core promoter element. 
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Figure 3-4: Basal transcription factors in of the archaeal core promoter (adapted from 
Gehring et al. 2016; Haberle and Stark, 2018). 

 
 

Despite the organism being considered, there is some sort of conservation found 

in this cis-regulatory element (Putta and Mitra, 2010; De Avila e Silva et al, 2011; 

Gehring et al, 2016). As archaea and eukarya share similarities in their promoters (Olsen 

and Woese, 1996), in the following, they are discussed together. The most-conserved area 

found in the archaeal-eukaryotic promoter element is found at -27/-28 bps upstream the 

TSS (Haberle-Stark, 2018; whilst in bacteria, the conservation is located at -10 bps 

upstream the TSS (Llórens-Rico et al, 2015). In Figure 3-5, there is an eyeshot of the 

most-conserved motifs found in the promoters of archaea, eukarya, and bacteria. In 

addition, bacteria possess another conserved spot in the -35 region (Bi et al, 1997), while 

archaea/eukaryotes retain the BRE element found directly upstream the TATA-box 

(Lagrange et al, 1998). 
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Figure 3-5: The most-conserved cis-regulatory elements in: A) archaea, B) bacteria, and 

C) eukarya (Adapted from Crooks et al, 2004; Jager et al, 2014). 

 
 

 An overview of Figure 3-5 shows that both segments in the tree of life have an 

AT preference in their most-conserved areas found in the promoter. Moreover, the 

promoter has been identified as an AT rich locale (Akan and Deloukas, 2008; Meysman 

et al, 2014). The AT richness reported in the promoter region is a key feature to be 

captured by techniques that seek to inflict gene variance and identify promoter regions 

(Ning et al, 2014). Therefore, the conservation found in the promoter regions might yield 

in significant differences, especially when coded into numeric parameters (Ryasik et al, 

2018) that resemble the primary structure of the DNA molecule. The features discussed 

in Section 3.5 are tuned with information that will benefit from the unique aspect 

promoter elements own (Fouqueau et al, 2018).  
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3.5 DNA CONVERSION IN STRUCTURAL PARAMETERS 

  It has been reported that there is a growing interest in well-annotated genes. 

Computer processing capacity has been growing substantially, hence, the workload has 

shifted to inputs that have been curated. Only then, a computer analysis can deliver better 

insights on reliable data (Koonin and Galparin, 2010; de Avila e Silva et al, 2020). 

The number of experimentally identified promoters is constantly growing. 

Simultaneously, more robust analyses are required to deploy more information gain 

(Yella and Bansal, 2017). The nucleotide (textual) analysis of a given DNA/RNA 

sequence might yield information gathered in a way that the genetic alphabet is highly 

limited and the entropy observed in a four-symbols system is deficient (Shannon, 1948).  

In this sense, there are options to approach a DNA segment and extract valuable 

information of it. A satisfactory way to codify information is by doing it into numeric 

attributes (Shannon, 1948), an “alphabet” with many possibilities. It is possible to find 

many intrinsic characteristics of the DNA into the literature; indeed, more than 100 

numeric attributes have been reported (Friedel et al, 2009). In Table 3-2, a list of 

conformational and physicochemical features of the DNA strand is displayed. The 

numeric criterion for the selection of these parameters is the presence of studies that 

employed the given feature in order to identify, classify or characterize specific genomic 

regions (i.e. reported differentiation found between promoters and control sequences). 

The original authors that performed the calculations as long as the year of publication are 

also included. 

  

 

Table 3-2: List of physicochemical and conformational DNA features. 

DNA feature Type Differentiation 

reported in 

Original authors 

DNA free energy Physicochemical Kanhere and Bansal, 

2005 

Rangannan and Bansal, 

2007 

SantaLucia and Hicks, 

2004 

Enthalpy contribution Physicochemical Privalov and Crane-

Robinson, 2018 

SantaLucia and Hicks, 

2004 
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DNA bending Conformational Ozoline et al, 1999 

Meysman et al, 2014 

Karas et al, 1996 

Intrinsic curvature Conformational Yella and Bansal, 2017  

Base-pair stacking Physicochemical Meysman et al, 2014 

Zhang et al, 2015 

Ornstein et al, 1978 

SSID Physicochemical Wang et al, 2006 Wang et al, 2006 

 

In the following subsections, each one of the features in Table 3-2 will be explored. 

 
3.5.1 DNA DUPLEX STABILITY (DDS) 

The stability values presented by the DNA molecule directly rely on the 

nucleotide sequence. When there is a bond between adenine and thymine (A, T), the 

quantity of hydrogen bonds is found to be two. On the other hand, when the nucleic acids 

turn to be cytosine and guanine (C, G), the number of bonds raises to three, as Figure 3-

6 depicts. During the transcription process, there is a formation of an open complex, in 

other words, the DNA strand needs to be broken so its nucleotides are read by RNAP and 

synthesized into a mRNA molecule. This opening process involves energy being spent. 

For this process to be energetically viable, it is reasonable that the less stable DNA 

segment be broken, in that case, bonds between AT, which present a weaker chemical 

bond (Kanhere and Bansal, 2005; De Avila e Silva et al, 2014). 

 

Figure 3-6: Hydrogen bonds between AT and CG. 

 
 

There has been reports of DDS being employed as a distinguishing feature 

between promoters and other genomic sequences. Kanhere and Bansal (2005), de Avila 

e Silva et al (2014), and Yella and Bansal (2017) have, somehow, employed a 



 14 

parametrization of eukaryotic and/or bacterial promoter sequences and were able to 

perceive differences in the resulting signal. The three branches in the three of life have 

differences found in their transcription apparatus and, consequently, their promoters 

(Basehoar, 2004; Werner, 2007; Blombach and Grohman, 2017). For instance, archaeal 

and eukaryal promoters both present an AT rich segment located directly upstream the 

TSS. This phenomenon is directly associated with the need to constantly open the DNA 

that was previously discussed. There has been reports stating the AT richness of 

promoters in the two domains (French et al, 2007; Yella and Bansal, 2017).  

In terms of evolutionary biology, bacteria are known for, probably, being closer 

to the LUCA than archaea/eukarya (Gupta, 1998). Indeed, the transcriptional instruments 

of the three domains seem to follow a direct order: bacteria, archaea and, eukarya; where 

the first are the least exquisite and the last the most (Gribaldo and Brochier-Armanet, 

2006). In this concern, there is homology of the upstream AT rich are found in 

eukaryotes/archaea into bacteria, a region known as the Pribnow-box (Pribnow, 1975).  

Therefore, the configuration of a promoter element tends to have a leaning 

towards AT nucleotides, turning the promoter as a less-stable site.  

  

3.5.2 ENTHALPY CONTRIBUTION 

Over the past years, there has been efforts to visualize a living organism as a 

machine so our surroundings can be better understood (Davies et al, 2013). However, it 

is a simple reduction to bring cells and man-made machines to the same level (Rosen, 

1991). The same author (Rosen, 1991) mainly states that biology gave origin to physics, 

not conversely. Thus being, the physics are a special case of biology, and following this 

premise, it can be stated that living-organisms and machines essentially differ. 

Notwithstanding, a cell performs a series of processes in order to maintain its functions 

and it is powered by a very important macromolecule: adenosine triphosphate (ATP) 

(Krebs et al, 2017). ATP is the main energy source for most complex biological processes 

and it is produced in the cell’s powerhouse: the mitochondrion. This organelle, which 

may have once been another organism (Sagan, 1967), provides up to the weight of a 

human body for it to fulfil its energy requirements. When internal processes are 

happening (e.g. cellular division, transport, motility), they consume ATP and, 

consequently, exchange heat with their surroundings. Herzel et al., (1994) stated four 

moments where the heat variation can be measured inside the cell: (i) chemical bonds 
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leading to cell aggregation; (ii) mass transport in and outside the cell; (iii) heat generation 

caused by the metabolism and; (iv) information stored in the genetic code.  

The recognition and binding of TPB and TFB to conserved sites in the promoters 

cause a change in enthalpy levels within the cell (Privalov and Crane-Robinson, 2017). 

The fact that promoters tend to be AT rich also contributes to the enthalpy levels found 

in these regulatory regions in a way that the necessary enthalpy contribution for a system 

to thermodynamically stabilize is rather different between ATs and CGs (Privalov and 

Crane-Robinson, 2017). While the first takes 7.4 ± 0.7 kcal/mol-bp-1, the second requires 

a higher value, up to 10.75 ± 1.43 kcal/mol-bp-1. In addition, Marmur and Doty (1962) 

stated the thermostability of the cell is impacted by the extra hydrogen bond GCs possess. 

Therefore, this calorimetric measurement of DNA molecule is presented as a possible 

identifier of specific intergenic regions. 

 

3.5.3 DNA INTRINSIC BENDING 

The genetic information is found in groups of genes stored in the long strands of 

DNA of any living organism. Complex organisms, such as eukaryotes have an extension 

of information that they need to use proteins called histones to help manage and organize 

the cell. In eukaryotes, a group of eight histones will form a structure namely nucleosome. 

When genetic information needs to be accessed, the eukaryotic organism will employ 

certain proteins that liberates DNA from the histone, turning the genetic material 

accessible to other proteins to act. However, the histone configuration in archaea differs; 

it does not form nucleosomes but coils the DNA into a structure defined as "slinky DNA" 

(Bowerman et al, 2021, Henneman et al, 2018). Figure 3-7 shows the way histone proteins 

bind the archaeal DNA. 

The slinky DNA bent by the archaeal histone is a more flexible structure, i.e. the 

information can be easily accessed (in comparison to eukaryotes). Additionally, the 

archaeal cell does not need additional proteins to release DNA from its histones. This 

agrees with the need of the right nutrients being expressed at the right time, granting the 

archaeal cell survivability as well as the reduced genome of single-cell organisms 

(Bowerman et al, 2021; Browning and Busby, 2016). 

There are studies that support the hypothesis that archaea are early descendants 

from eukaryotes (Spang et al, 2018; Brunk and Martin, 2019). Hence, the comprehension 

on the evolution of the 'minimalist' DNA organization on archaea might shed light on 

how the eukaryotic cell sprung. 
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In an attempt to optimize the DNA access and, consequently, the transcription, the 

RNAP enzyme needs to reach the segment to be coded, in an attempt to quantify the way 

DNA is bent, a pattern has been reported (Karas et al, 1996). Moreover, Dlakic et al, 

(2005) found bending peaks every 10 base-pairs (bps) with stronger bending every 20 bps 

intervals. Study models were formulated around the three-nucleotide model and their 

positioning (Satchwell et al, 1986). The position of certain trinucleotides might affect the 

DNA bending away or toward the nucleosome (Pedersen et al, 1998). Moreover, the 

conservation of certain nucleotides (e.g. archaeal TATA-boxes) might affect the DNA 

bending itself in a different angle (Leonard et al, 1997), especially those that are affected 

by certain proteins such as TPB and TFB. Archaea holds a transcriptional architecture 

similar to the organisms previously cited (Mattiroli et al, 2017), its TATA-box affects the 

DNA bending in a way that TA dinucleotides will angle the DNA in 6.74°, the most 

impactful angle bending from the 16 possible dinucleotide combinations (Karas et al, 

1996). 

Figure 3-7: The structure of an archaeal histone (Henneman et al, 2018). 

 
 

3.5.4 INTRINSIC CURVATURE 

 The DNA structure is widely known as a double helix (Krebs et al, 2017). 

However, linear trajectories are unlikely to happen in the chaotic nature of things 

(Buchanan, 2011). The DNA molecule often suffers from a curved and twisted aspect 

since it is tightly packed to form its final structure (Jauregui et al, 2003). Notwithstanding, 



 17 

it makes sense for these twists to follow any sort of pattern (Swanepoel, 2007). These 

rules might assist bioinformaticians to understand better the misty patterns nature presents 

itself. 

 It is essential to have robust experiments to determine a structural feature of the 

DNA. Therefore, the prediction of structures by bioinformatics models is more reliant 

(Kanhere and Bansal, 2003). A crystal-clear representative of the previous statement is 

the curvature as a parameter to code genetic information. There are many forms to extract 

information of curvature values (Gohlke, 2020). Di and trinucleotide models have 

succeeded in capturing specific curvature signals (Kozobay-Avraham et al, 2004). Thus 

being, it is essential for the researcher to know their data in order to apply the curvature 

model that is able to provide the highest information gain (Kanhere and Bansal, 2003). 

 The intrinsic curvature calculation results in the affect certain nucleotides (di, tri, 

and even penta) have in the linearity of the double-helical DNA (Jauregui et al, 2003). In 

addition, three parameters are employed in the global curvature calculation: tilt, roll, and 

twist. A visual representation of these parameters is available in Figure 3-8. Even though 

there are different models for curvature calculation, each one presenting strengths and 

weaknesses (Gohlke, 2020). In Table 3-3, five models for curvature calculation are 

displayed. A series of A nucleotides (every 10-11 bp) configures in alterations in the 

global curvature of the DNA (Koo et al, 1986). However, the effect other nucleotides 

have in the curved profile has also been widely studied (Bolshoy et al, 1991). Curvature 

parameters have been linked with transcription initiation in a way that the region upstream 

the TSS is more curved (Kanhere and Bansal, 2005). Studies that aimed to perpetrate 

specific genomic regions based on a curvature analysis have found the promoter region 

as a contributor to distinctive curvature profile (Olivares-Zavaleta et al, 2006; Kumar et 

al, 2016). Therefore, due to the particularities of this feature, it might be employed to 

capture genetic variance. 

  

Figure 3-8: Parameters for calculating DNA curvature (Ghorbani and Mohammad-
Rafiee, 2011). 
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Table 3-3: Different models for DNA curvature calculation. 

Model Feature Sensitive towards Nucleotides Reference 

AA wedge 

Certain nucleotides are 

responsible to protrude curved 

aspect based on hydrophobic 

interactions. Favorable 

hydrophobic interactions to 

avoid atom collision distorts 

DNA geometry. 

 

AA Di  

Jernigan et al, 

(1987) 

 

BMHT 

Measurements made upon 16 

dinucleotides (instead of AAs 

from AA wedge). 

 

AT  Di, penta  
Bolshoy et al, 

(1991) 

CS 

Based on mean values of 

dinucleotides obtained from B-

DNA crystal structure. AA and 

TT duplexes don’t own large 

roll/tilt values. 

 

16 dinucleotides Di 
Nagaich et al, 

(1994) 

Calladine 

Repeated sequences have 

different gel migration speed 

when compared to random 

DNA sequences of the same 

length. This means that each 

dinucleotide has a different 

angular configuration specified 

by its values of twist and roll, 

this concept has two forms: a 

DNA rod or a superhelical 

structure, which the diameter is 

larger than a DNA rod. 

 

16 dinucleotides Di 
Calladine et 

al, (1988) 

Nucleotide 

Positioning 

Certain triplets prefer a higher 

preference for being positioned 

in the DNA molecule.  

64 triplets Tri 
Satchwell et 

al, (1986) 
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3.5.5 BASE-PAIR STACKING 

 Nucleic bases are arranged in a three-dimensional structure. Bases  of the two 

strands are paired to form bps that stack along the helical axis (Krebs et al, 2017). The 

major components of this forces are hydrophobic and van der Waals. The stacking 

interaction between two adjacent base-pairs is an essential force component responsible 

for DNA stabilization and gene regulation (Zhang et al, 2015). One major component in 

order to understand the nuclear details of the gene expression is the thermodynamic 

stability of the double-stranded DNA. This stability is determined through interactions 

between bps that, in this particular case, are stacked among themselves (Häse and 

Zacharias, 2016).  

 The extent of the stacking interaction is determined by the sequence itself, where 

the hierarchy always follows: purine-purine; purine-pyrimidine; pyrimidine-pyrimidine 

(Friedman and Honig, 1995). Hence, stacking forces found in GCs contribute more to the 

stability of the molecule than ATs, this indicates that de degree of stabilization depends 

on the DNA sequence. There is also a cost involved in unstacking different bps. Zhang et 

al (2015) reported that ATs cost 14 picoNewton (pN) to unstack whilst GCs would cost 

20 pN. Figure 3-9’s panel A depicts the nature of stacked base-pairs, which when zoomed 

to panel B (this Figure ought to be visualized vertically not horizontally) shows stacking 

interactions between purines in the left side and pyrimidines in the right side. The stacking 

force is depicted in the middle of the panel and in this case, there is an optimal 

stabilization due to the components of it. The forces involved in this interaction would 

increase if pyrimidines were involved (Friedman and Honig, 1995).  

 Once again, the distinctive status of the promoter region when compared to other 

genomic areas is able to be coded into structural attributes such as base-pair stacking and 

be used to distinguish promoters (Ornstein et al, 1987; Meysman et al, 2014).  
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Figure 3-9: Stacking forces that drive DNA stabilization (Adapted from Friedman and 
Honing, 1995; Yakovchuk et al, 2006). 

 
 

  

3.5.6 STRESS INDUCED DNA DUPLEX DESTABILIZATION (SSID) 

 The transcription initiation process involves DNA being untwisted (Krebs et al, 

2017). This denaturation process (also referred as unwinding) must be highly controlled 

to maintain the energy at balance. This feature of the DNA is configured by relaxation in 

the hydrogen bonds between its base-pairs, which in constant separation decreases the 

use of energy needed to constantly open the DNA strand (Wang et al, 2004). This 

unwinding is then perceived in the super helical structure of the DNA, which is not related 

to the primary genetic structure. In this process, there is a difference between the energy 

spent in separating the strands to form an open complex, with the specific base pairs and 

the benefitted energy from the fractional relaxation in the super helical stress. It provides 

energy to control the SIDD process and for the DNA strand to remain open during the 

process when the mRNA is being written. It is known that in E. coli genome, the promoter 

sequences present a higher SIDD level. Some of the non-coding regions containing 

promoters are unstable, while coding regions are more stable under the stress imposed by 

negative super helical value. The variations in the super helical level in a promoter can 

show several effects in final product coded by the gene, one of them is the SIDD variation 

(Wang and Benham, 2006). 

 This feature has been employed as a reliable distinguisher between intergenic 

regions in E. coli (Wang and Benham, 2006) in a way that the SSID levels differ from 

promoters, intergenic regions, and coding regions. This enables the capacity of employing 
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SSID as a mean to code genetic information seeking to obtain specific signals along the 

DNA strand (De Avila e Silva et al, 2011). 

 

3.6 PROMOTER CLASSIFICATION TOOLS 

 Biological data is characterized by huge amounts of data (Han and Liu, 2019); 

data that would need a lifetime to be analyzed and processed by humans (Huang et al, 

2006).  For instance, when new genes are identified, hypotheses need to be extensively 

analyzed to be either proven or rejected. As a solution, the employment of Artificial 

Intelligence (AI) techniques has been a reliable way to speed up the process (Conrad and 

Gerlich, 2010) of validating the findings made upon biological data (Mishra et al, 2020). 

It is important to state that experimental approaches are still essential for conducting 

reliable molecular experiments, among others. 

 A crucial task in enhancing gene regulation and optimizing biological processes 

is the identification of promoter sequences. For example, the broader comprehension of 

promoter activity could, in theory, grant the researchers the full control over starting and 

halting the expression of certain genes (Kernan et al, 2017). However, the 

prediction/identification of promoter sequences is a harsher task than it might look 

(Mishra et al, 2020). In Section 3.4, several conserved aspects of the promoter site have 

been presented, but the lone presence of these motifs is not enough to protrude a reliable 

promoter scanning. To corroborate this, reports have been gathered about: (i) 

transcription initiating in non-fixed locations over the genome (Wade and Grainger, 

2014); (ii) an apparent overlapping of the promoter element into the TSS (Kanhere and 

Bansal, 2005); (iii) high gene density (Mishra et al, 2020), specially in organisms with a 

short genome such as archaea. 

 Thus, the promoter prediction task is not a simple thing. Indeed, the performance 

of different approaches under the same training dataset has shown to be quite varied 

(Klauck et al, 2020). Indeed, many of these methods present a way to code genetic 

information into numeric parameters (Ryasik et al, 2018) and use it as input of machine 

learning approaches. Moreover, promoter-specific tools are sprung among the three 

domains with the exception of the shortage on archaea. Table 3-4 illustrates some of the 

tools that have been created to predict promoters, as well as the classification technique 

implemented, including machine learning approaches. From this, there is a clear 

preference by artificial neural networks due to its classificatory nature. In the next section, 

this machine learning routine will be further explored. 
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Table 3-4: Comparison of promoter identification tools. 

Tool Organism How does it find 
promoters? 

Does it 
use 
machine 
learning? 

Overall 
precision 

Reference 

DeePromoter Human 
Mouse 

A combination of 
ANN and long short-
term memory 
recognizes TATA-less 
and TATA-containing 
promoters. 

Yes, 
ANNs 

Human TATA 
= 93% 
Human non-
TATA = 97% 
Mouse TATA = 
92% 
Mouse non-
TATA = 91% 

Oubounyt et 
al (2019) 

Prompredict E. coli 

It calculates the 
stability difference 
between coding and 
promoter regions 
through a division of a 
sequence in 
overlapping windows 
of 15 nucleotides. 
 

No 

90% sensibility 

Yella et al 
(2018) 

bTSS Finder E. coli 
Cyanobacteria 

Presence and distance 
of promoter elements 
through the 
presence of physico-
chemical features. 
 

Yes, 
ANNs 

E. coli = 
89.22% 
Cyanobacteria 
= 79.26% 

Shamuradov 
et al (2017) 

BacPP E. coli 

Neural networks are 
trained with promoter 
and non-promoter 
examples; then 
biological  
rules are extracted 
from the learning 
technique. 
 

Yes, 
ANNs 

σ24 = 86.9%, 
σ28 = 92.8%,  
σ32 = 91.5%, 
σ38 = 89.3%,  
σ54 = 97.0%, 
σ70 = 83.6% 
 

De Avila e 
Silva et al 
(2011) 

CNN 
promoter 

Human 
Rat 
B. subtilis 
A. thaliana 
E. coli 

Analyzes promoter 
sequences from both 
prokaryotes and 
eukaryotes. The 
classification is made 
via coevolutionary 
ANN method and a 
deep learning 
approach. 
 

Yes, 
ANNs 

90% sensibility 
96% specificity 
0.84 correlation 
coefficient Bedoya and 

Bustamante 
(2011) 

PromH Human 

Statistically identifies 
conserved 
regions in human 
promoters. 
 

No 

TATA-boxes = 
70% Solovyev and 

Shamuradov 
(2003) 

Promoter 2.0 Pol II 
promoters 

A combination of 
elements similar to 
neural networks and 
genetic algorithms to 
recognize a set of 

Yes, 
ANNs 

Correlation 
coefficient = 
0.63 Knudsen 

(1999) 
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discrete sub patterns 
with  
variable separation 

   

3.6.1 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING  

 The life sciences have a lot to gain when backed upon reliable techniques that 

allow its hypothesis to be fully stressed (Conrad and Gerlich, 2010). Thus being, the 

following section contextualizes two major – and confusing – misconceptions upon this 

chunk of computer science: Artificial Intelligence (AI) and Machine Learning (ML). It is 

essential to first define, in an epistemological approach, what learning is (Russel and 

Norvig, 2012). 

 The raw definition of learning has been a challenge to many psychologists over 

the past centuries (De Houwer et al, 2014). One widely accepted definition states the 

process of learning is defined as the acquiring of new understanding, knowledge, 

behavior, skills, values, attitudes, and preferences. In other words, learning might be 

defined as a change in behavior due to experience (e.g. being burned by a hot stove) 

(Lachman, 1997; Gross, 2015). This definition might be easily transmitted to a machine 

environment (Russel and Norvig, 2012).  

 It is not easy to find an area of learning with such a deep multidisciplinary focus 

than AI and ML. These disciplines contain mathematics, electrical engineering, statistics, 

signal processing, computer science, among others (Joshi, 2020). That is one of the 

reasons AI and ML are two different parts of computer science. A fine way to think of AI 

was brought up by Alan Turing, who defined the area as: "if there is a machine behind a 

curtain and a human is interacting with it and the human feels like he/she is interacting 

with another human, then the machine is artificially intelligent". Therefore, the objective 

of AI is not the building of such an incredible machine that is able to solve any problem 

in this universe but rather imitating human behavior, even considering its flaws. 

(Christian, 2013; Joshi, 2020). On the other hand, ML refers to a computer program that 

is able to produce a behavior that was not intended by its creators. This behavior 

performed by the machine is defined as learning. Next, this section will discuss the nature 

of AI/ML techniques around the concept of supervised learning. 
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3.6.2 ARTIFICIAL NEURAL NETWORKS 

 Supervised learning refers to prior knowledge about what the output should be. 

Furthermore, an ML system might be considered as a black box that is able to produce 

outputs based on the inputs. If there is a set of historical data that contains outputs for 

some given inputs, this type of learning is called supervised. An application of supervised 

ML is classification. This method consists in assigning a label (target variable) to a class. 

This initial step of using previous knowledge to learn more about the dataset is called 

training. Next, the testing of the model created with the training is performed (Russel and 

Norvig, 2012; Joshi, 2020). 

 There are many algorithms that follow a classificatory nature, such as Artificial 

Neural Networks (ANNs), decision trees, random forest, support vector machines, among 

others. As previously explored in Table 3.4, ANNs are a very common approach in 

classifying promoter sequences. The implementation of supervised ML employed in this 

thesis is ANN. 

 

3.6.2.1 THE NATURE OF ARTIFICIAL NEURAL NETWORKS 

ANNs simulate the way a human brain processes information. This computational 

model is employed in several areas, such as engineering, biology, and economics, among 

others. When used in the biological sciences, ANNs might perform tasks to analyze 

genomic data and recognize patterns (Baldi and Brunak, 2001; De Avila e Silva and 

Coelho, 2020). 

 ANNs consist of a parallel distributed processor formed by simple units. These 

units aim to form knowledge upon data in a classificatory way. Moreover, an ANN 

consists of an i unit connected to a j unit. These units have a synaptic weight associated 

to them, namely Wij (Mount, 2000). The connection of these units, i.e. neurons, which 

are divided into different layers. The neurons present in the layers, namely: input, hidden, 

and output have weights associated to them and these units all connected through a time 

span is one of the main premises of the functioning of an ANN (Russel and Norvig, 2012; 

De Avila e Silva and Coelho, 2020).   

 The ANN model depicted in Figure 3-10 is a multilayer perceptron, where all 

input neurons are indirectly connected to the output, which is represented by a variation 

of a discrete time signal. Then, the application of weights in a given neuron is only going 

to affect the output of this neuron, granting independence to the model. More than one 
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level of hidden neurons might be employed. In fact, the reason of the hidden neurons is 

to mediate the conversion of an input into an output (De Avila e Silva and Coelho, 2020). 

  

Figure 3-10: Visual representation of an artificial neural network. 

 
 

3.6.2.2 THE ARCHITECTURE OF ANNS 

 
A given ANN is featured by the connection of its neurons, which consists on 

weights in neural connections and an activation function. Figure 3-11 traces the path an 

input signal is transformed into the output of the ANN model. The neurons are connected 

and they behave as the information processing unit which is responsible for the operation 

of an ANN. From Figure 3-11, three basic models of a neuronal model are identified: 

I. A set if synapses or connection links, which are characterized by a weight 

or strength. A signal x1 at the input of synapse j is connected to the neuron 

k is multiplied by the synaptic weight wjk.  
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II. An adder for summing the input signals, which are weighted by the 

respective synapses of the neuron. 

III. An activation function for establishing a limit to the amplitude of the 

output of a neuron. Typically, the normalized amplitude of a neuron is 

written as a closed unit interval (0, 1). 

Additionally, Figure 3-11 presents an externally applied bias bi, which function is 

to lower or increase the net input of the activation function. Mathematically, a neuron k 

is described by the following Equations 1 and 2: 

𝑈" = 	 𝑊"&𝑥&

(

&)*

						(1) 

and 

𝑦" = 𝜑(𝑢" + 𝑏")				(2) 

where x1, x2, ..., xm are the input signals; wk1, wk2, ..., wkm are the synaptic weights of 

neuron k; uk is the adder, which varies according to the input signal; bi is the bias; 𝜑 is 

the activation function; and yk is the output signal of a neuron. The use of the bias bk 

transforms the output uk of the adder as shown by Equation 3, which: 

𝑣" = 𝑏" + 𝑢"									(3) 
 
 
Figure 3-11: Model of an artificial neuron. 

 
 

The rationale of the activation function 𝜑 is designed to convert the weighted sum 

of input and transform it into an output. Thus being, the behavior of the activation 
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function controls how well the neural network will learn the training dataset and its output 

will define the type of predictions the model can make (Wu, 1997; Joshi, 2020). There 

are different examples of activation functions, and they have to be carefully chosen 

considering the prediction task to be performed. Examples of activation functions are: 

threshold, linear, and sigmoid. The main difference between these functions are the values 

they can comprise when turning an input into an output. To begin with, the simpler 

activation function is the threshold function, these are limited due to comprise either 1 or 

0 as a value. Moreover, linear functions allow multiple outputs (and not only 1s or 0s). In 

this, the input is multiplied by the weight of the neuron and creates an output proportional 

to the input. Finally, sigmoid functions are employed when there is the need to predict 

any normalized probability as an output, since probabilities range from 1 to 0 (Haykin, 

1999; Russell and Norvig, 2012). A visual representation of a graph of each of the three 

functions described is found in Figure 3-12.  

 

Figure 3-12: Activation functions of a neuron 

 
 

3.6.2.3 TRAINING ANNS 

Prior to their actual use, ANNs need to be trained. In other words, this process 

involves defining an architecture so the ANN functions well with a given set of inputs for 

any desired output. This happens through correct weights being applied to every unit of 

the network. Then, an input signal is tested according to its reaction to a specific weight. 

If the performance is not satisfactory – the root mean squared has not been reduced -  the 
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training is repeated until it fits a given condition and the observed vs expected error is 

minimized (Wu, 1997), i.e. the ANN has converged.  

The training of the neural network with a given set of weights through the entire 

training dataset is defined as an epoch. This hyper parameter grants that every single 

training data point had an opportunity to update its internal model parameter. 

The walkthrough of all the weights in an ANN (randomly initiated) is defined as 

one epoch through the full training dataset. In general, after every epoch, the weights are 

updated. However, if an ANN is trained too much, overtraining might occur. This means 

that the model is able to memorize its input examples and performs well for a given 

dataset, being unable to generalize, i.e. the ability to handle unseen data. In order to solve 

this and deliver an acceptable ability to work with data different than the seen data, 

validation methods are employed. Examples of validation methods are k-fold-cross-

validation, jackknife, holdout, among others. The chosen method of this study is k-fold-

cross-validation, which consists in partitioning the data in k equal parts; then, k-1 

partitions are employed to train the model and the unused kth part is used in the evaluation 

of the ANN (Russell and Norvig, 2012; De Avila e Silva and Coelho, 2020).   

  
3.6.2.4 LEARNING ALGORITHMS AND THE RPROP EXAMPLE 

Neural networks are employed for data classification in a way that entry data will 

produce outcomes. For it to succeed, the observed output should be as close as possible 

of the desired one. This requires an external curator to interact with the model in order to 

minimize the observed output error. One example of error minimization function is 

represented by Equation 4: 

𝐸 = 	 (𝑦7 − ℎ:(𝑥7));
<

7)*

									(4) 

where, hw(𝑥7) is the expected output, 𝑦7 is the observed output, which is associated to a 

given set of parameters w. n is the number of input patterns. Additionally, an ANN might 

have more than one outcome unit, therefore, Equation 4 is replaced by Equation 5 in order 

to accommodate 𝑛"outcomes. 

𝐸 = 	 (𝑦7 − ℎ:(𝑥7));
<?

&)*

<@

7)*

				(5) 
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 Examples of learning algorithms are: perceptron (Rosenblat, 1958), 

backpropagation (Rumelhart et al, 1986) and resilient backpropagation (Rprop) 

(Riedmiller and Braun, 1993). The chosen algorithm in this study is the Rprop without 

weight backtracking because of its relative robustness and low computational cost 

(Riedmiller, 1994; Igel and Hüksen, 2003). 

Such applications, which are based on gradient optimization, are commonly used 

in supervised learning models. The advantage is to control the weight update in every 

connection in an ANN in a way that at each iteration, the weights are updated in the 

opposite direction of the gradient, where the gradient itself gives the direction of the 

steepest (and the costliest) ascent. The cost in moving to reach the local minimum is 

determined the learning rate 𝛼. The gradient optimization is the process to reach the 

minimum of a function: 

𝜃* = 	𝜃D − 	𝛼∇𝑗 𝜃 	(6) 

where 𝜃* is the next position to be reached, 𝜃D is the current position, and 𝛼∇𝑗 a small 

step in the gradient times the direction of the fastest increase, where 𝛼 is a constant of ∇, 

pre-determined by the learning rate, which usually varies are 0.001, 0.003, 0.01, 0.03, 

0.1, 0.3, and j is the gradient. This minimizes the oscillation and maximizes the update 

step-size. In each iteration, the updated weights are described by: 

𝑊7&
(HI*) 	= 	𝑊7&

(H) +	𝑊7&
(H)			(7) 

In the Rprop algorithm, the direction of each weight update is based on the sign 

of the partial derivative 𝜕𝐸/𝜕𝑊7&, where each weight, i.e., ∆7&, is adapted individually. 

One of the applications of the Rprop algorithm does not have the backtracking of its 

weights, being computed as: 

∆𝑊7&
(H) = −𝑠𝑖𝑔𝑛

𝜕𝐸 H

𝜕𝑊7&
∆7&
H 		(8) 

 
the sign function returns +1 if the argument is positive or -1 if the argument is negative, 

else, it returns 0. The ∆7&	are initiated to a constant ∆D. Each iteration of the Rprop 

algorithm is described by the adjustment of ∆7& in Equation (9). 
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∆7&
H =

min 𝜂I∆7&
HW* , ∆(XY 𝑖𝑓	

𝜕𝐸(HW*)

𝜕𝑊7&
	
𝜕𝐸(H)

𝜕𝑊7&
	> 0

min 𝜂W∆7&
HW* , ∆(7< 𝑖𝑓	

𝜕𝐸(HW*)

𝜕𝑊7&
	
𝜕𝐸(H)

𝜕𝑊7&
	< 0

∆7&
(HW*)	𝑒𝑙𝑠𝑒

	 		(9)	 

 

where 0 <	𝜂W < 1 < 𝜂I. The updating of the weights is shown by the parameters ∆(7< 

and ∆(XY.	The Equations 6 and 7 generate: 

𝜕𝐸(H)

𝜕∆7&
(HW*) = 	

𝜕𝐸(H)

𝜕𝑤7&
(H) 	

𝜕𝑤7&
(H)

𝜕∆7&
(HW*) 	= 	−	

𝜕𝐸 H

𝜕𝑊7&
	𝑠𝑖𝑔𝑛

𝜕𝐸 HW*

𝜕𝑊7&
	(10) 

 
The direction for Δ7& to change follows Equation 7 and fits a gradient-based optimization 

of the error of the network, mediated by the limits defined by Δ7&.  

 
 

3.6.3 EVALUATION OF MACHINE LEARNING TECHNIQUES 

 Machine learning techniques to have their results assessed, i.e. validated. To do 

so, there are performance metrics that can unveil the delicate and misty innards of 

machine learning algorithms. A good way to start is through a confusion matrix (Stehman, 

1997).  As known as error matrix, this table layout enables that supervised learning 

algorithms have their performance visualized (Powers, 2007). 

 A confusion matrix might be used to assess problems which the output contains 

two or more classes. The table that results in the matrix has predicted and actual values, 

which are employed to assess the performance of the technique. The elements that 

comprise a confusion matrix belong to two classes – positives and negatives, these 

elements are: i) True Positives (TPs), which are the number elements from one c-class 

correctly classified as c-class, if the element of c-class is classified as belonging to d-class 

then; ii) a False Negative (FN) is labeled. Now, if an element of d-class is classified as a 

member of c-class, thus, iii) a False positive (FP) is considered. Finally, if a non-c-class 

is correctly classified as not belonging to c-class, iv) a True Negative (TN) is assigned. 

Figure 3-13 depicts the organization of a two-class confusion matrix, where the main 

diagonal (i.e. the one formed by TP and TN) represents the correctly classified labels 

while the opposite diagonal (i.e. is represented by FP and FN) indicates the 

misclassification. 
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Figure 3-13: Confusion matrix 

 

 

  

 Once the confusion matrix is set, the performance of the ML algorithm might be 

assessed through: 

I. Accuracy, which measures how well a 2-class classification correctly identify or 

exclude a class, i.e. the proportion of correct predictions (both true positives and 

true negatives) among the total number of observations. Its calculation is achieved 

through Equation 11. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
				(11) 

 

II. Recall, which classifies how many of the actual positives are captured and labeled 

as TPs by the model. This metric is positively affected by high rates of true 

positives and low rates of false positives. Its calculation is done by Equation 12. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
							(12) 
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III. Precision, which calculates how many of the classes classified as positive are 

actually positive. The cost of false positives is high when calculating precision 

through its formula, explained by Equation 13. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
										(13) 

 

IV. F1 score, which makes a balance between precision and recall. This metric is used 

for any classifications which there is a considerable difference between precision 

and recall. Instead of using arithmetic mean, F1 score uses harmonic mean, being 

a function of two variables (precision and recall) at the same time and penalizing 

extreme values. Its calculation follows Equation 14. 

𝐹1 =
2	×	𝑟𝑒𝑐𝑎𝑙𝑙	×	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

					(14) 

 

V. Specificity, which measures the rate of detecting TNs among the entire dataset. It 

is penalized by high numbers of false positives. Specificity is calculated through 

Equation 15. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
											(15) 

 

 Another derivation from a confusion matrix is the Receiver Operating 

Characteristic (ROC) curve, which is a performance measurement for classification 

problems under different thresholds. Many machine learning applications such as ANN 

is able to predict the membership of a certain class. The decision for classifying an 

observation is given by a parameter namely decision threshold. By default, in ANNs 

whose activation function is the sigmoid, the decision threshold is set to 0.5, meaning that 

any outcome of the ANN equal or greater than 0.5 is predicted as a positive class. Values 

lesser than 0.5 are predicted as negative. However, the default decision threshold may not 

be the best way to represent an optimal interpretation of the data, its adjust is given by 

calculating ROC curves. Moreover, The ROC may also be used to calculate the Area 

Under the Curve (AUC), which measures the degree of separation between thresholds of 

the same classification method as well as a comparison of performance of different 
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classification techniques (e.g. linear regression vs. ANN). Higher an AUC is, the better 

the model predicted certain class (Joshi, 2020). 

 ROC curves may be calculated from any metric derived of a confusion matrix 

(Peres et al, 2015). A common calculation derives from two competing metrics: recall (as 

known as sensitivity), which measures the true positives rate (TPR); and false positives 

rate (FPR), which is estimated by 1- specificity. This ratio is calculated in a way that the 

greater the TPR is, the lesser the FPR will be, Equation 16 describes it. 

𝐹𝑃𝑅 = 1 −	 rs
rsItu

   (16), 

  

where, FPR measures the false positives rate in a 0-1 range.  

 Hence, the ROC calculation is able to provide visual identification of the relation 

between true and false positions in a classification model (Bewick et al. 2004). 

 

3.7 FINAL CONSIDERATIONS 

Promoters are key elements in terms of controlling the gene expression within 

organisms in the three domains of life. The literature review conducted so far has shown 

how biology might benefit from state of the art computer techniques. However, specific 

tools that target archaeal promoters were not found until this literature review was 

finalized. The third domain is still a novelty in biological sciences and the availability of 

data from this organisms’ genomes is still rising. Thus being, this work aims to employ 

the machine learning techniques hereby described to build a novel classificatory 

algorithm of archaeal promoter sequences. 
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4 DATASETS AND METHODS 
In this chapter, an overview of the methods and datasets is described. To accomplish 

the objectives, genetic information is codified into the structural parameters namely 

enthalpy, curvature, stability, and bendability. Next, the numeric attributes brought by the 

previous step are used as an input for a classification through Artificial Neural Networks 

and an in-house statistical method for classification. The two models of classification are 

then validated with three different forms of control sequences, each one carrying 

particularities in order to stress the models. Finally, the outcome of each classificatory 

model is employed in identifying potential unannotated promoters in the archaeal 

genome. In order to describe a visual representation of the procedures, Figure 4-1 is 

provided.  

 

Figure 4-1: Description of the methods. 

 
 

4.1 DATASETS 

The data used to conduct this research is comprised by ATCG sequences and is 

divided into: i) archaeal promoters and ii) control data.  

 

4.1.1 ARCHAEAL PROMOTERS 

A total of 3630 experimentally verified promoter sequences are analyzed in this 

study. These sequences belong to three organisms: Haloferax volcanii with 1340 
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promoters, Sulfolobus solfataricus with 1042 promoters and, Thermococcus kodakarensis 

with 1248 promoters. These particular genomes were selected for being model organisms 

in the family of Euryarchaeota (H. volcanii and T. kodakarensis) and the family of 

Crenarchaeota (S. solfataricus). Moreover, the genome of these three organisms have 

been completely sequenced (Wurtzel et al, 2009; Jäger et al, 2014; Babski et al, 2016) 

and have transcriptome data (RNAseq) available, which grants the possibility of 

retrieving experimentally validated promoter sequences. Only primary TSS data was 

considered due to its abundance (internal, antisense, and secondary TSSs were not 

considered).  

Each experimentally validated promoter sequence contains 1000 nucleotides, 

ranging from -500 to +500, which was further sliced into a smaller region comprising the 

range -80 to +20. This sub-sequence is reported to contain the core promoter element 

(Haberle and Stark, 2018). The core promoter in archaea was observed as enough to 

convey archaeal transcription (Gehring et al, 2016) since it contains binding sites for the 

most important transcription factor proteins in archaea (Aptekman and Nadra, 2018). 

Therefore, the classification methods later explored encompassed these shorter sequences 

due to the high computational cost involved in working with a wider window of 

nucleotides that are not relevant for the promoter identification purpose. The full span 

(1000 nucleotides) was also considered in experiments that sought to boost the genetic 

variability of promoters when compared to intergenic regions. 

 
 
4.1.2 CONTROL SEQUENCES 

In order to provide a reliable set of control sequences, three control datasets with 

varied nature were constructed. The first contains the original sequences with their order 

rearranged through a shuffling process. The second is a more specialized shuffling 

process, as proposed by Oubounyt et al, (2019), which first divides the 100 nucleotides 

sequences into five blocks and then mixes the blocks. According to the authors, this 

method of obtaining control sequences is a reliable way to preserve consensual sites that 

might contribute positively or negatively in a classification method. Finally, a third level 

of control is added by picking the next 100 nucleotides after the window that contains the 

core promoter, ranging from +21 to +121. The use of these intergenic regions is able to 

magnify the peculiarities found specifically in promoters (Kanhere and Bansal, 2005). 
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In each experiment, the number of archaeal promoters equals the number of control 

sequences, totaling three datasets of 3630 control sequences each. These sequences were 

achieved through in-house Python scripts.  

 

 

4.2 STRUCTURAL PARAMETRIZATION 

Four DNA physical/structural assets were chosen to code genetic information into 

numerical attributes. The features DNA duplex stability (DDS) (SantaLucia and Hicks, 

2004), enthalpy contribution (SantaLucia and Hicks, 2004), and DNA bending (Karas et 

al, 1996) rely on dinucleotides sliding windows. Following a different form to be codified, 

DNA intrinsic curvature (Bolshoy et al, 1991) presents sliding windows containing five 

nucleotides instead of two. 

The genetic alphabet is limited. In fact, all the information living beings need to 

maintain their biological functions is represented in a four-letter script. According to 

Ryasik et al, (2018), when genetic content is translated into numerical attributes, much 

more information is gathered. The database Dinucleotide Property Database (DiProDB) 

(Friedel et al, 2009) stores information on how to numerically represent genetic 

information. The database has 120+ properties with unique values that might be 

considered. Among these entries, the properties considered in this work are found. Table 

4-1 indicates DDS, enthalpy contribution, and DNA bending values for the 16 

dinucleotide possible combinations of the four nucleic acids. 

 

 

Table 4-1: Enthalpy, DDS, and bendability parameters for every possible dinucleotide 
combination. 

Dinucleotide Enthalpy 
(kcal/mol-bp-1) 

DDS 
(kcal/mol-bp-1) 

DNA bendability 
(degrees) 

AA -7.6 -1.00 3.07 
AT -7.2 -0.88 2.6 
AC -8.5 -1.45 2.97 
AG -8.2 -1.3 2.31 
TT -7.6 -1 3.07 
TA -7.2 -0.58 6.74 
TC -7.8 -1.28 2.51 
TG -8.4 -1.44 3.58 
CC -8 -1.28 2.16 
CA -8.5 -1.45 3.58 
CT -7.8 -1.28 2.31 
CG -10.6 -2.24 2.81 
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GG -8 -1.84 2.16 
GA -8.2 -1.3 2.51 
GT -8.4 -1.44 2.97 
GC -10.6 -2.24 3.06 

 

    

Moreover, the parameters considered for calculating intrinsic curvature are 

available in Supplementary Table S1. Due to the greater amount of possible combinations 

(1024) of five nucleotides window as opposing to the 16 presented in Table 4-1, the 

parameters of curvature were moved to Supplementary Materials. 

 

4.3 A CLASSIFICATION BASED ON CLASSICAL STATISTICS 

A statistical analysis was elaborated by following the common rule archaeal 

promoter sequences have: there is a strong signal in converting the binding sites of the 

transcription factors TBP and TFB into structural properties. The conserved aspect found 

only in the promoter is used to create a window containing the thresholds for a particular 

sequence to be classified as a promoter. First, the arithmetic mean of each promoter’s 

TBP + TFB is calculated following Equation 16, 

 

𝑥 = 𝑝			
<

<I*

				(16) 

 

where 𝑥 is the mean of the summation of p, which is a vector containing the n positions 

where the transcription factor proteins TFB (6 nucleotides which are represented by 5 

values) and TBP (3 nucleotides which are converted into 2 values) bind the DNA. Once 

the means are obtained, the standard deviation is calculated through Equation 17. 

 

𝑆𝑡𝑑𝑒𝑣 = 	
(𝑥7 − 𝑥);	

𝑛
						(17) 

where 𝑥7 is the individual value of each p (please see Equation 24), 𝑥 is the mean, also 

obtained from Equation 24, and n is the number of occurrences. The calculation of 

Equation 24 and Equation 25 was employed in the creation of Table 4-2, which is formed 

by the thresholds achieved by the analysis of DNA Duplex Stability of promoter 

sequences in three archaea against the three levels of control sequences depicted in 4.1.2.  
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Table 4-2: Values used to create the intervals that perform the classical statistics analysis. 

 Promoters Standard 

deviation 

Control 01 Control 02 Control 03 

H. volcanii -8.324 ± 1.183 -11.82 -11.63 -11.47 

S. solfataricus -6.705 ± 0.930 -9.022 -8.36 -8.86 

T. kodakarensis -7.135 ± 0.836 -10.38 -10.07 -9.27 

 
From Table 4-2, an interval was created in each organism following the limit of the 

Promoter means plus/minus the standard deviation. The obtaining of this interval is seen 

in Equation 18. 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 	𝑥xyz(zH{y| ± 𝑠𝑡𝑑𝑒𝑣				(18) 

 
 
4.4 A CLASSIFICATION BASED ON NEURAL NETWORKS 

The ANN simulations took place in the R environment through the neuralnet 

package (Beck, 2018). The algorithm chosen to fit the ANN was the resilient 

backpropagation. This application of ANN has succeeded in classifying biological data 

before (Liu et al, 2020). The number of neurons in the hidden layer was kept as 2. The 

low number of hidden neurons has been described as enough in problems where no higher 

complexity is required. Additionally, when data has to fit a highly complex curve, the 

performance of such might get affected (Geman et al, 1992). The ANNs that presented 

the best performance through the assessment of precision, accuracy, recall, and specificity 

in the datasets (please see Section 4.1) were chosen. Among these, ANNs that presented 

a balanced computational cost were picked (no simulations that took more than 200,000 

steps to converge were considered). Additionally, the number of epochs employed in each 

test was increased until the validation and training errors keep dropping (Afaq, 2020). 

Moreover, in order to provide a form to assess the capacity of generalization of the 

ANN model, the k-fold-cross-validation was chosen, where k = 10. This method involves 

in reserving 1/10 of the dataset to be further tested. This grants that any biased data point 

gets covered. The validation process was done following the sample method in R (Stone, 

1974). 
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5 RESULTS AND DISCUSSION 
The results of this thesis are organized through two scientific articles, one is accepted 

for publication in the journal Microbiology Open and the other is having its draft 

finalized. 

 The article namely “Characterization of promoters in archaeal genomes based on 

DNA structural parameters seeks to employ structural and energetic profiles of the DNA 

molecule in order to located transcription factor binding sites throughout the genome of 

archaea. Moreover, this article aimed to divide the promoter sequences of archaea into 

two groups: conserved-TATA and degenerated-TATA. The observation of the two 

groups showed that promoter signals are still perceptible when a given promoter lacks a 

conserved TATA motif, indicating that the innards of archaeal transcription are more 

complex than the lone presence of consensual motifs. This article has been accepted for 

publication in the journal Microbiology Open. 

The second article is titled: Machine learning and statistics shape a novel path in 

archaeal genome annotation. This article is in its final stage and will be submitted to BMC 

Bioinformatics. Through this article, we aimed to capture signals that turn promoters 

unmatched. Then, this rationale is captured by an in-house statistical model and Artificial 

Neural Networks in order to classify promoter sequences among varied forms of control. 

Lastly, the pattern observed in the promoters is carried out to annotate the genome of 

archaea whose promoters have not been – in silico and experimentally – validated.  
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ABSTRACT 

The transcription machinery of archaea can be roughly classified as a simplified version 

of eukaryotic organisms. The basal transcription factor machinery binds to the TATA-

box found around 28 nucleotides upstream of the transcription start site; however, some 

transcription units lack a clear TATA-box and still have TBP/TFB binding over them. 

This apparent absence of conserved sequences could be a consequence of sequence 

divergence associated with the upstream region, operonic, and gene organization. 

Furthermore, earlier studies have found that a structural analysis gains more information 

compared to a simple sequence inspection. In this work, we evaluated and coded 3630 

archaeal promoter sequences of three organisms, Haloferax volcanii, Thermococcus 

kodakarensis, and Sulfolobus solfataricus into DNA duplex stability, enthalpy, curvature, 

and bendability parameters. We also split our dataset into conserved TATA and 

degenerated TATA promoters in order to identify differences among these two classes of 

promoters. The structural analysis reveals variations in archaeal promoters' architecture, 

i.e., a distinctive signal is observed in the TFB, TBP, and TFE binding sites independently 

of these being TATA-conserved or TATA-degenerated. In addition, the promoter 

encountering method was validated with upstream regions of 13 other archaea, suggesting 

that there might be promoter sequences among them. Therefore, we suggest a novel 

method for locating promoters within the genome of archaea based on energetic/structural 

features. 

 

Keywords: Archaea; Transcription; Structural features; Energetic features; TFBS. 
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1 INTRODUCTION 

Archaea represent the third domain of life 1 and include an essential and vast variety of 

organisms with a large diversity of habitats and lifestyles. This cellular domain has many 

family divisions belonging to four superphylas: TACK, ASGARD, DPANN, and 

Euryarchaeota. However, well-known information is only available for two divisions, 

Euryarchaeota and Crenarchaeota, the latter being a member of the TACK superphylum. 

In recent years, with the advent of next-generation sequencing, the availability of archaeal 

genomes has increased, and more than 300 archaeal genomes have become available to 

the scientific community, allowing the exploration of diverse functional and evolutionary 

mechanisms, such as membrane origin, operon organization and the proteins devoted to 

regulating gene expression. Nevertheless, there is a lack of well-annotated archaeal 

genomic data 2, which enables a lush path towards genomic annotation such as regulatory 

sequences validation. 

The transcription of DNA into RNA and its regulation are central processes in the genetic 

information flux. Research accumulated in the last few years has evidenced that 

transcription in archaeal organisms can be roughly described as a simplified version of 

its eukaryotic relatives 3. The initiation process begins with the binding of a TATA-

binding protein (TBP) and a transcription factor B (TFB) to a specific DNA segment, 

defined as a promoter, allowing the recruitment of the RNA polymerase (RNAP) enzyme. 

Additionally, the initiation might be optimized with the presence of a transcription factor 

E (TFE) protein. Subsequently, an open complex is assembled, followed by the 

elongation process whereby the RNAP carries out the synthesis of a messenger RNA 

molecule (mRNA)4, 5. In general, three main conserved DNA elements devoted to the 
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transcription process have been identified as common to all archaeal groups: (i) an 

initiator element (INR) around the transcription start site (TSS); (ii) the TATA-box 

element, centered around −26/27 relative to the TSS; and (iii) an element upstream the 

TATA box comprising two adenines at -34 and -33, which is designated as ‘transcription 

factor B recognition element’ (BRE). These elements, INR, TATA-box, and BRE, are 

crucial to initiating transcription in archaeal genes. They also present a close homology 

to eukaryotic transcriptional machinery3, 4. 

An in-depth analysis of archaeal promoter elements will provide comprehension of the 

gene functionality. As an example, there are advances in biotechnology that have 

employed promoter identification tools in order to enhance gene regulation and optimize 

biological processes. The broader comprehension of promoter activity could, in theory, 

enable full control over the start and halt of the expression of specific genes 6. The 

production rise in biosynthetic processes is related to the control of regulatory pathways7. 

For example, clinical biology has benefited from promoter identification due to the 

increased mutation rate found in regulatory regions that may lead to antibiotic resistance. 

Evolutionary biology has also applied promoter identification as part of the process to 

understand better horizontal gene transfer between species of the three domains of life 8. 

Bioinformatics tools employ physical assets of the genetic material and relate these with 

gene expression variance, enabling the distinction of specific regions such as promoters. 

The study of DNA structural features may give rise to more information about promoter 

activity than a primary sequence analysis 9-12. Indeed, comparative analysis of bacterial 

and eukaryotic promoters have shown that Pribnow and TATA-boxes, respectively, differ 

at structure and sequence level from other random locations within and around the 

promoter 10, 13. 
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When converted into numeric attributes, genetic information will promote enough 

sensibility for capturing even the smallest alterations among the nucleic acids 14. Hence, 

we consider the nucleotide conservation found in archaeal promoters 15, 16 will convey a 

sustained structural parametrization, enabling the characterization of archaeal promoters. 

In this work, we selected four structural parameters, namely, DNA duplex stability, 

enthalpy, curvature, and bendability, which are fundamental in understanding the 

molecular recognition that happens at a structural level 17. 

 

2 DATASETS AND METHODS 

2.1 Archaea promoter sequences 

In order to determine the nucleotide composition, a total of 3630 promoter sequences of 

three archaeal organisms were evaluated, which are divided into 1340 sequences of 

Haloferax volcanii 18, 1248 of Thermococcus kodakarensis 19, and 1042 of Sulfolobus 

solfataricus 20. These particular archaea were selected because they are model organisms 

and well-studied members of Halobacteriales, Thermococcales, and Sulfolobales, 

respectively. They also have available transcriptome data (RNAseq), enabling the 

possibility of retrieving promoter sequences from their published information. Internal 

and antisense promoters from the transcriptome dataset were not included due to 

limitation of data. The sequence IDs of the three organisms as well as the gene annotation 

of all H. volcanii, T. kodakarensis and, S. solfataricus promoters used in this analysis are 

available at http://doi.org/10.5281/zenodo.5137551 

The original data covers 1000 nucleotide length sequences, which contains 

experimentally identified promoters with their transcription start site (TSS), spanning 

from -500 to +500. Only primary TSS (pTSS) was considered, a category that accounts 

for abundant transcripts from this original dataset. A shorter sequence was selected, 
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located at 80 nucleotides upstream and 20 nucleotides downstream of the TSS, i.e., the 

core promoter. This briefer region was chosen because it contains the core promoter 

element 21-23. Accordingly, the core promoter has been detailed as sufficient to convey 

archaeal and eukaryotic transcription 2, 23, 24. Indeed, promoters from halophilic archaea 

were reported to be located in the range proposed here; their TATA-boxes were found in 

a median distance of 31 base-pairs (bps) upstream the TSS 18. Additionally, 96% of the 

pTSS TATA-boxes from T. kodakarensis are located in a median distance of 30 base-

pairs upstream of the TSS 19. The TATA-boxes identified in S. solfataricus were found 

in a median length of 35 base-pairs upstream of the TSS 25. Each archaeal promoter 

sequence had a shuffled version assigned in order to have a control sequence. The 

shuffling process was performed by the Supplementary Script S4 (please see at 

http://doi.org/10.5281/zenodo.5137598). 

Moreover, upstream regions from 13 other archaea found in the RSAT Prokaryote 

Database 42 were selected to validate the method formulated upon the experimentally 

verified promoters. Aciduliprofundum boonei (741 sequences), Archaeoglobus fulgidus 

(866 sequences), Ferroplasma acidarmanus (430 sequences), Haloarcula marismortui 

(1998 sequences), Methanocaldococcus jannaschii (1866 sequences), Methanosarcina 

mazei (822 sequences), Methanospirillum hungatei (1467 sequences), 

Methanothermobacter thermautotrophicus (1870 sequences), and Pyrococcus furiosus 

(1286 sequences) were selected as members of Euryarchaea. The following members of 

TACK archaea were selected: Caldivirga maquilingensis (1669 sequences), 

Hyphertermus butylicus (764 sequences), Ignicoccus. hospitalis (1005 sequences), and 

Thermofilum pendens (1926 sequences). DPANN and ASGARD archaea were not 

included due to their data unavailability. These particular organisms were selected 
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because of their key role in the evolution of archaea, posing as unique organisms in the 

archaeal tree of life 43. 

 

 

2.2 Conversion in structural parameters 

In order to convert the DNA sequences into structural parameters, four DNA structural 

features were selected, namely DNA duplex stability (DDS), enthalpy contribution, 

bendability, and intrinsic curvature. These features are biologically relevant to 

characterize promoter regions since they convert DNA information into numeric 

attributes 14. These four parameters have previously been used and reflect in capturing 

specific signals not evident at sequence level 9-13, 26. Moreover, the appointed features can 

be described as:   

I. The DDS of double-stranded DNA is calculated as the sum of its base-pairs' free 

energy. It considers the free-energy values associated with the 16 possible 

combinations of dinucleotides 9.  

II. Enthalpy parameters refer to thermodynamic processes that occur at a cellular 

level (e.g., chemical bonds, mass transport inside and outside the cell, and heat 

spawning) that affect the thermostability of the cell 27. These numeric parameters 

have been taken from DNA melting studies 26.  

III. DNA bendability is a sequence-dependent measurement, reflecting in the DNA 

bending itself because of the effect specific proteins have in the molecule's helical 

structure. By this means, DNA bending facilitates the assembly of transcription 

complexes 28. TATA's bend angle is wider than GC-rich sequences; for instance, 

TA dinucleotides angle the DNA at 6.74°, the most impactful of the 16 

dinucleotide combinations 29. 
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IV. Finally, intrinsic curvature reflects the capacity of DNA to form small circles 

around its helical axis 30. To this end, we used a model based on DNA gel 

retardation values (BMHT) for its sensibility towards AT-rich sequences 30, 31. 

BMHT calculation estimated 16 roll and tilt wedge angles based on independent 

gel mobility experiments performed on a training set of 54 different sequences 30. 

 

All the four features selected are sequence-dependent and their combination yields more 

information gathered on a sequence 17. The complete set of promoter sequences was 

converted into structural parameters through a self-developed Python script available in 

Supplementary Script S1 that adopts the numeric parameters available in Table I, except 

for intrinsic curvature. The curvature calculation hinges on five nucleotides (instead of di 

and resulted in 45 possible combinations). The 1024 numeric parameters are the result of 

BMHT calculations 30, and they are available in Supplementary Script S2 (please, see 

scripts at http://doi.org/10.5281/zenodo.5137598).  

[Table 1] 

The structural properties were computed in a one-nucleotide sliding window. All 

promoters were aligned relative to their TSS, and numerical values were averaged to get 

information in each position. 

 

2.3 Classification of conserved TATA and degenerated TATA sequences 

To classify the core promoters in conserved and degenerated TATA, the MEME Suite - 

a motif-based sequence analysis tool 32 was employed. All the sequences were scanned 

with MEME, and the motifs identified by it were extracted. A key motif for this research 

would be located in -27/-28, so the search was directed for this specific region to capture 

the TATAs. The following parameters on MEME were used in the organisms H. volcanii 
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and T. kodakarensis: i) 100 nucleotides sequence length, considering the -80 to +20 

region, where the core promoter is located 21, 23; ii) a 0-order background model generated 

from the supplied sequences; iii) zero or one occurrence (of a contributing motif site) per 

sequence; iv) 8 motifs were located; v) the width of the motifs varied between six and 

eight nucleotides 33. The motif discovery had to follow different parameters in S. 

solfataricus, in which the width of the motifs was increased from six to fifteen nucleotides 

to capture the TATA-boxes adequately. Hence, TATA boxes and BRE elements were 

considered. The combination of these two consensuses was described as a critical feature 

in Sulfolobaceae family transcription 25. 

Afterward, the dataset was classified through a self-developed Python script (available in 

Supplementary Script S3, see at http://doi.org/10.5281/zenodo.5137598), dividing it into 

two groups: conserved TATA, those motifs identified by MEME, and degenerated 

TATA, containing sequences which the previously identified motif was not present.  

 

2.4 Statistical tests 

Statistical tests were conducted in order to differentiate the two groups this study hinged 

on. First, the dataset was found not to be normally distributed through the rejection of the 

null hypothesis achieved by the Shapiro-Wilk test. Then, to determine if the difference 

between the groups is significant, the Wilcoxon test was applied. Additionally, the non-

parametric Kruskal-Wallis test was conducted in order to determine the difference 

between variances in specific organisms. These tests were done in the R programming 

language in the stats package 

 

3 RESULTS 

3.1 Sequence composition 
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The nucleotide composition of the three archaeal organisms were evaluated to denote the 

genome configuration particular to each archaeon. Firstly, the 1000-nucleotide sequences 

are composed by 33.8% of AT in H. volcanii DS2, 49.3% in T. kodakarensis KOD1 and, 

65.5% in S. solfataricus P2. Second, the core promoter elements (-80 to +20) in these 

organisms presented an AT value of 40% in H. volcanii, 56.8% in T. kodakarensis and 

71.1% in S. solfataricus. 

 

3.2 Conserved TATA and Degenerated TATA boxes. 

The datasets were split in two groups to capture particularities and verify the hypothesis 

of the archaeal transcription being beyond TATA box conservation. The two groups are 

Conserved TATA and Degenerated TATA. Motifs of eight nucleotides were found in H. 

volcanii and T. kodakarensis. Simultaneously, the outcome of S. solfataricus 

encompassed 14 nucleotides. In an attempt to preserve the particularities each archaeon 

has; the analysis was individually done. The TATA-box motif of each organism is found 

in Figure A1, from where H. volcanii presented SYTTWWAA, T. kodakarensis TATA 

was identified as VYTTWWAA and S. solfataricus accounted for VYTTWWWW 

motifs.  

When each one of the motifs were employed to split the dataset, the results of Table 2 

were produced. To begin with, 1.56% of 1340 H. volcanii sequences presented the TATA 

motif previously identified. The number of sequences containing motifs in T. 

kodakarensis was 42.72%, and 80.6% in S. solfataricus. Then, the GC% of each group 

was evaluated to verify if they yield statistical significance. U-tests were performed due 

to the data not following a normal distribution. Figure 1 shows boxplots from which the 

means of the conserved and degenerated TATA in H. volcanii, T. kodakarensis, and S. 

solfataricus are p = 0.0006556, p = 0.131, and p = 0.005365, respectively.  
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[Table 2] 

 

Figure 1: Boxplots of TATA-containing and TATA-less promoter sequences in three 

archaea 

 

3.3 Structural profiles of archaeal promoter sequences vary when transcription factors 

binding sites 

The entire promoter dataset was converted into enthalpy, DNA Duplex Stability (DDS), 

bendability and intrinsic curvature in order to capture specific signals in a wider genome 

analysis, ranging from -500 to +500. In addition, control sequences were added to elicit 

the strong signals promoter sequences have (Figure 2). A zoomed version, encompassing 

the promoter region only, was included in Figure 3, where there is a conserved region 

around the binding site of the transcription factor proteins: TBP (TATA-box, around -

28), TFB (BRE, around 2 nucleotides upstream TBP), TFE, whose binding site is located 
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in position -10 (PPE – proximal promoter element) and +1, matching the INR (initiator 

element). 

 

Figure 2: The structural/energetic profiles of 1000 nucleotides found in promoter and 

shuffled sequences. 

 

Figure 3: The structural/energetic core promoter profiles. 
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3.4 Definition of a promoter-like profile 

By following the profiles brought by Figure 3, a promoter-like profile was formed upon 

the average per position (100 nucleotides) of each feature in the validated promoter 

dataset. By combining nucleotide information (sequence logo profiles) with the structural 

parametrization brought by this work, Figure 4 was created. In this, the strong DDS, 

enthalpy, bendability, and BMHT curvature signals are overlaid with transcription factor 

binding sites. 

 

Figure 4: Transcription factor binding sites represented by signals regarding 

structural/energetic profiles of the core promoter 
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3.5 Validation of the results with 13 other archaea 

Upstream regions of thirteen other archaea divided into: four TACKs and nine 

Euryarchaea were included in order to test the validity of the findings. Figure 5 holds the 

genomic information of each archaeon plotted against DNA bendability, BMHT 

curvature, enthalpy, and DDS. In all cases, a strong signal around the ending of the 

upstream regions was located. 

Figure 5: The structural/energetic upstream profiles in thirteen archaea. 
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Moreover, we included a comparison of the upstream regions found in 13 archaea against 

the promoter-like profile established in 3.6. In order to perform a comparative analysis, 

the promoter-like profile was compared to upstream regions of 13 other archaea split into 

their phylogenetic family (Figure 6). Since the profiles observed in Figure 6 are the same 

when another physical feature is tested, comparisons following DDS, enthalpy, and 

bendability are included in Figures A2, A3, and A4, respectively. Analysis of variance 

tests indicated each organism is significantly different that the other by presenting p < 2e-

16 in TACK archaea and p < 2e-16 in Euryarchaea. The statistical analysis of the two 

archaeal families is visualized in boxplots available in Figure 7. 

 

Figure 6: Bendability signal comparison of promoters and upstream regions of thirteen 

other archaea. 
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Figure 7: Boxplots of promoters and upstream regions of thirteen other archaea converted 

to bendability. 
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3.6 Conserved and degenerated TATA groups 

The core promoters belonging to conserved and degenerated TATA groups were 

converted into energetic and structural properties in order to indicate RNAP action in 

both groups (Figure 8). The two groups presented overlapping lines with strong signals 

being located around -28. 

 

Figure 8: The structural/energetic profiles of conserved and degenerated TATA 

promoters. 

 

 

4 DISCUSSION 

4.1 Nucleotide content  

The results of this study suggest that TATA-boxes slightly vary between organisms, 

supporting the archaeal diversification reported by 34. Additionally, the AT content was 

found differently in each archaeon. 
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When the archaeal promoters were evaluated as owning either a conserved or a 

degenerated TATA consensus, the GC% each organism has explained the conservation 

found upon TATA-boxes, so the organism with higher genome GC% was the one that 

presented the least amount of TATAs, this is no news. However, the binding of TBP, 

TFB, and TFE to a TATA+BRE motif and TFE binding to PPE/INR were found through 

this in-silico approach to be off from a primary sequence inspection, just as that 

conservation found around these motifs is not mandatory. Moreover, promoter activity is 

still observed when promoters lack a clear TATA-motif 22. Therefore, the uneven number 

of conserved TATA sequences sprung around archaea is explained by the dynamics of 

biology. The two groups of promoters (conserved and degenerated TATA) have also 

presented statistical significance in H. volcanii and S. solfataricus when the GC content 

was employed as a possible explanation for each group. This reassures the hypothesis that 

the probability of TATA-boxes to be found depends directly on the genome composition 

of a given archaeon. 

 

4.2 Energetic and structural parameters define promoter-like profiles 

Promoter sequences might be defined by a set strong signals around their Transcription 

Factor Binding Sites (TFBS), i.e. TFB, TBP, and TFE. In this study, the conversion of 

genetic information into physical attributes has protruded distinctive signals around 

TFBS of the proteins, whilst shuffled sequences did not. These strong signals are in favor 

of the location of these basal Transcription Factor (TF) location, which is explained by 

the laws ruling the promoter area. Both enthalpy and stability are energetic-related 

features, the base-pairs that are more commonly found in promoters are AT and their 

chemical conformation reflects in more energy available 13, 26, 27, 37. The distinct signals 
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represented by curvature and bendability are explained by the TFBS being more rigid and 

more curved, which acts against the formation of nucleosomes 38. 

The profiles obtained in this study indicate conserved aspect around the binding site of 

proteins that are key elements in the Pre-Initiation Complex (PIC) formation. In vitro 

studies advocated for TBP+TFB being enough to begin transcription. Indeed, our results 

show conserved signals around this site (-27 2nt spacer -31). However, the inclusion of 

signal in the vicinity of -10 and +1, which matches TFE binding site, also contributes to 

promoter definition. This TF protein was reported to optimize the formation of PIC in 

TACK and other families as well 44. 

The signal located in the -10 region of three archaea is also an important factor in bacterial 

transcription40. Both bacteria and archaea share the same last unique common ancestor, 

and consequently, share similarities despite their evolution taking place in different 

branches of the tree of life 16.  

The lack of annotation in the genome of many archaea creates the possibility for such 

methods. When the validation of the promoter identification method was tested in 

upstream regions of thirteen archaea, the same rationale was inferred. Mining published 

information upon transcripts has enabled the definition of a promoter-like profile through 

a combination of strong signals in the binding sites of TBP, TFB, and TFE (-27, -31, -10, 

and +1, respectively). When data that does not encompass experimentally validated 

promoter sequences only was assessed, strong signals were observed in the ending of the 

sequences, suggesting that there might be promoter elements found in these intergenic 

areas, as identified by 45.  

The observation of Figure 6 (and Figures A2, A3, and A4) assures the possibility of 

locating promoters in upstream regions due to their physical profile. Two archaea have 

shown TFBS signals similar to the promoter-like profile: A. boonei and T. pendens. Even 
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though there are differences in the signals protruded by promoters and potential 

promoters, resulting in significant differences between the groups’ averages, the second 

group poses for the rise of methods for promoter identification as the one brought by this 

study. 

 

4.3 Promoter signal beyond TATA boxes. 

TATA boxes are likely the most conserved sites that distinguish both archaeal/eukaryotic 

promoters. The initiation of the transcription in archaea has been reported to start with 

TPB and TFB proteins attaching to the promoter 3 and enhanced by the presence of TFE44, 

this binding is assisted by the conservation found around the binding site of these proteins. 

Promoters have been grouped in terms of their TATA analysis in 12, 38, both authors 

performed structural conversions such as this study did. Divergent results could be 

observed in which TATA-conserved sequences did not show significant differences when 

compared to TATA-degenerated ones. 

In this study, both TATA-conserved and TATA-degenerated groups have shown the same 

strong signals around the binding sites of TFB, TBP, and TFE. There are differences that 

might protrude mathematical variance, e.g. the TFB and TBP binding sites analyzed in 

the curvature profile of three archaea and H. volcanii’s bendability and DDS. This feature 

defines the promoter (either TATA-conserved or not) as a promoter-like sequence, which 

is a novel approach in identifying and finding new promoter sequences in archaea. 

 

5 CONCLUSIONS 

The results we demonstrated in this study encourage the DNA codification into 

energetic/structural attributes that reveal transcription factor proteins binding sites where 
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a primary sequence inspection failed. Hence, this study poses a novel method to be used 

in genome annotation regarding archaeal promoters. 
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Tables 

 

Table 1 - Enthalpy, stability, and bendability parameters for every possible dinucleotide 

combination. 

Dinucleotide Enthalpy 
(kcal/mol-bp-1) 

Stability 
(kcal/mol-bp-1) 

DNA bendability 
(degrees) 

AA -7.6 -1.00 3.07 
AT -7.2 -0.88 2.6 
AC -8,5 -1.45 2.97 
AG -8.2 -1.3 2.31 
TT -7.6 -1 3.07 
TA -7.2 -0.58 6.74 
TC -7.8 -1.28 2.51 
TG -8.4 -1.44 3.58 
CC -8 -1.28 2.16 
CA -8.5 -1.45 3.58 
CT -7.8 -1.28 2.31 
CG -10.6 -2.24 2.81 
GG -8 -1.84 2.16 
GA -8.2 -1.3 2.51 
GT -8.4 -1.44 2.97 
GC -10.6 -2.24 3.06 

 

Table 2 – Conserved TATA and degenerated TATA upon core promoter sequences in 

three archaeal organisms. 

  Conserved TATA Degenerated TATA 

Organism Genome 

GC% 

Number of 

promoters (%) 

GC% Number of promoters 

(%)  

GC% 

H. volcanii 66.13 21 (1.56%) 54.09 1319 (98.44%) 60.03 

T. kodakarensis 50.67 506 (42.72%) 42.55 742 (57.28%) 43.39 

S. solfataricus 34.48 840 (80.6%) 28.42 202 (19.4%) 30.68 
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Figure legends 

 

Figure 1: Boxplots of TATA-containing and TATA-less promoter sequences in three 

archaea. We divided 1340 H. volcanii, 1248 T. kodakarensis and 1042 S. solfataricus 

sequences into two groups: TATA-containing and TATA-less by following Materials and 

Methods 2.3. Then, we calculated the GC% of each sequence in the groups and created 

boxplots alongside U-tests to discover significance between the groups. The p values in 

the non-parametric U-tests were: 0.0006556, 0.131, and 3.241e-09 in H. volcanii, T. 

kodakarensis and, S. solfataricus, respectively. 

 

Figure 2: The structural/energetic profiles of 1000 nucleotides found in promoter 

and shuffled sequences. Energetic/structural features of three archaea. We plotted the 

average value in each one of the 1000 positions. The highest peak is seen at position -28 

in three archaea, four measurements. The blue line represents the promoter sequences and 

the green line indicates a shuffled version of the promoters. The shuffling process was 

carried out by a Python script available in Supplementary Script S4. 

 

Figure 3: The structural/energetic core promoter profiles. Energetic and sequence-

dependent features of three archaea. We plotted the average of the core promoter positions 

reported by Kadonaga, 2012; Haberle and Stark, 2018. Our plots indicated a strong signal 

in i) the TATA-box and BRE positions; ii) the PPE area. 

 

Figure 4: Transcription factor binding sites represented by signals regarding 

structural/energetic profiles of the core promoter. Nucleotide information (sequence 

logo profiles) are overlaid with signals that represent the core promoter content. 

 

Figure 5: The structural/energetic upstream profiles in thirteen archaea. Thirteen 

other archaea were selected from 42 in order to validate the promoter-like behavior 

observed. These organisms have 400 nucleotide-long sequences corresponding to 

upstream sequences where no annotation towards promoter finding was done. The blue 

lines represent bendability profiles, the purple enthalpy, the green refers to DDS, and the 

red is BMHT curvature. 
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Figure 6: Bendability signal comparison of promoters and upstream regions of 

thirteen other archaea. The red line (promoter-like) represents the average formed upon 

experimentally validated promoter of H. volcanii, S. solfataricus, and T. kodakarensis to 

be compared with upstream sequences of thirteen other archaea divided into two 

phylogenetic families. The remaining DDS, enthalpy, and BHMT curvature are found in 

Figures A2, A3, and A4, respectively. 

 

Figure 7: Boxplots of promoters and upstream regions of thirteen other archaea 

converted to bendability. The boxplots represent statistical comparisons between the 

promoter-like profile, (red), formed upon experimental data of H. volcanii, S. 

solfataricus, and T. kodakarensis. The p < 2e-16 values obtained by the nonparametric 

Kruskal-Wallis test conveyed statistical significance in the averages of both groups. 

Additional analyses encompassing BMHT curvature, enthalpy, and DDS are found in 

Figures A5, A6, and A7, respectively. 

 

Figure 8: The structural/energetic profiles of conserved and degenerated TATA 

promoters. The conserved and degenerated TATA core promoter profiles are plotted. 

The lines represent the average value each group and organism showed. The navy-blue 

lines represent sequences that had a MEME-identified TATA motif, the light blue depicts 

sequences in which the specific TATA motif was not found. 
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Appendix Figures 

 

Figure A1: H. volcanii, T. kodakarensis and S. solfataricus TATA-motifs identified 

by the MEME suite. S1 (a) indicates H. volcanii, from which the resulting motif was 

found in a median position downstream of the TSS of 31 bps. The e-value of this motif is 

1.8 e-092; it has been found in 382 sites; its relative entropy is 12.1 and; information 

content = 13.2. S1 (b) indicates T. kodakarensis, motifs located in a median distance of 

30 bps downstream of the TSS. Its e-value is 1.3 e-017; this motif has been located in 257 

sites; relative entropy and information content 12.3 and 12.4, respectively. S1 (c) 

represents the TATA-motif found in S. solfataricus found in a median distance of 30 bps 

downstream the TSS. The e-value = 6.1e-022, site count 192, relative entropy = 12.5 and, 

information content = 16.2. 

 
 

 

 

 

 

 

 

 

 



 72 

Figure A2: DNA Duplex Stability signal comparison of promoters and upstream 

regions of thirteen other archaea. The green line (promoter-like) represents the average 

formed upon experimentally validated promoter of H. volcanii, S. solfataricus, and T. 

kodakarensis to be compared with upstream sequences of thirteen other archaea divided 

into two phylogenetic families. 
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Figure A3: Enthalpy signal comparison of promoters and upstream regions of 

thirteen other archaea. The purple line (promoter-like) represents the average formed 

upon experimentally validated promoter of H. volcanii, S. solfataricus, and T. 

kodakarensis to be compared with upstream sequences of thirteen other archaea divided 

into two phylogenetic families. 
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Figure A4: Bendability signal comparison of promoters and upstream regions of 

thirteen other archaea. The blue line (promoter-like) represents the average formed 

upon experimentally validated promoter of H. volcanii, S. solfataricus, and T. 

kodakarensis to be compared with upstream sequences of thirteen other archaea divided 

into two phylogenetic families. 
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Figure A5: Boxplots of promoters and upstream regions of thirteen other archaea 

converted to BMHT curvature. The boxplots represent statistical comparisons between 

the promoter-like profile, (red), formed upon experimental data of H. volcanii, S. 

solfataricus, and T. kodakarensis. The p < 2e-16 values obtained by the nonparametric 

Kruskal-Wallis test conveyed statistical significance in the averages of both groups. 
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Figure A6: Boxplots of promoters and upstream regions of thirteen other archaea 

converted to enthalpy. The boxplots represent statistical comparisons between the 

promoter-like profile, (red), formed upon experimental data of H. volcanii, S. 

solfataricus, and T. kodakarensis. The p < 2e-16 values obtained by the nonparametric 

Kruskal-Wallis test conveyed statistical significance in the averages of both groups. 
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Figure A7: Boxplots of promoters and upstream regions of thirteen other archaea 

converted to stability. The boxplots represent statistical comparisons between the 

promoter-like profile, (red), formed upon experimental data of H. volcanii, S. 

solfataricus, and T. kodakarensis. The p < 2e-16 values obtained by the nonparametric 

Kruskal-Wallis test conveyed statistical significance in the averages of both groups. 
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ABSTRACT 

Background 

Archaea are a vast and unexplored domain. Bioinformatics techniques might enlighten 

the path to a higher quality genome annotation in varied organisms. Promoter sequences 

of archaea have the action of a plethora of proteins upon it. The conservation found in a 

structural level of the binding site of proteins such as TBP, TBP, and TFE aids RNAP 

DNA binding and makes the archaeal promoter prone to be explored by statistical and 

machine learning techniques. 

Results 

In this study, experimentally verified promoter sequences of the organisms Haloferax 

volcanii, Sulfolobus solfataricus, and Thermococcus kodakarensis were coded into DNA 

duplex stability attributes (i.e. numerical variables) and were classified through Artificial 

Neural Networks and an in-house statistical method of classification, being tested with 

three forms of controls. The recognition of these promoters enabled its use to validate 

unnanoted promoter sequences in other organisms. As a result, the binding site of basal 

transcription factors was located through a DNA duplex stability codification. 

Additionally, the classification presented satisfactory results (above 90%) among varied 

levels of control.  

Conclusions 

The classification models were employed to perform genetic annotation into the archaea 

Aciduliprofundum boonei and Thermofilum pendens, from which potential promoters 

have been identified and uploaded into public repositories. 

BACKGROUND 
 
The righteous introduction of the archaeal domain to the tree of life dates no longer than 

half a century. Since then, a lush path towards discovering new insights in order to benefit 

archaeal genome annotation arose. The archaeal domain is diverse 4, 5, they inhabit the 

Earth's most extreme environments to our guts. Hence, finding a model organism that 

represents the whole expanse of this domain is rather a simple-minded and reductionist 

task. At least 13 families in the archaea phylogenetic tree might be spotted, which have 

huge dissimilarities both in their genetic and phenotype setting 6, 7, as well as elements that 

orchestrate the cell necessities. 

Single cell organisms rely on finely regulated cellular processes. The production of the 

right nutrient at the right moment grants the cell survivability. Instances of these processes 
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include the transcription of an RNA molecule. This mid-step operation is carried out by 

the RNAP enzyme and configures a central process in the genetic information flux across 

all domains. The way the transcription occurs in archaea roughly resembles the 

eukaryotes. In fact, these two domains are evolutive siblings and archaea might have 

given origin to eukarya 32. The overall structure of this process in these two domains 

presents a certain level of conservation. Indeed, the eukaryotic model poses as a more 

specialized version of its archaeal counterpart. For instance, while archaea employs a 

single RNAP to transcribe all genes, animals and plants make use of three and five 

different enzymes, respectively 28, 33. 

The recruitment of RNAP to the DNA is mediated by a DNA segment defined as a 

promoter sequence whose presence is necessary for the initiation of the transcription. The 

typical archaeal promoter element possesses three basal transcription factor binding sites. 

These additional proteins are TATA-box Binding Protein (TBP), Transcription Factor B 

(TFB), and Transcription Factor E (TFE) and they are needed in correctly directing RNAP 

to its precise site of action 34. On a nucleic acid level, these proteins bind to: i) a 

wTTATwww set of nucleotides, located at -25, matching the TBP binding site; ii) an 

ssnAA sequence located around two nucleotides upstream TATA and a TAC sequence 

located in the range of -1/-10, due to its two-extremity binding, TFB stabilizes TBP and 

the two combined create the Pre Initiation Complex (PIC); iii) a TFE protein has the 

function of assisting PIC formation, hence, its binding preference varies according to the 

promoter and organism 27, 34.  

The conservation found around the binding site of transcription factor proteins in the 

archaeal genome might be used as input in a way that the recognition of these regulators 

is able to provide a more reliable annotation. The promoter prediction task is well 

developed in other branches of life than archaea. Such tools have succeeded in classifying 

these regulators in eukarya and bacteria. However, due to the particularities archaea have, 

a universal promoter classifier gets jeopardized. 

Thus, the main objective of this study is to systematically locate the potential promoters 

of unannotated archaea. To do so, the use of the well-reported conserved elements 

belonging to an archaeal promoter are explored.  

 

MATERIALS AND METHODS 
 
2.1 Promoter sequences 
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In order to maintain balance in different archaeal families, Halobacteriales, Sulfolobales 

and Thermococcales were picked. These have transcriptome data available, i.e. promoter 

sequences can be extracted, from which we selected 3630 archaeal promoter sequences 

of the organisms Haloferax volcanii 8, Sulfolobus solfataricus9 and, Thermococcus 

kodakarensis 10. These organisms are members of two different archaea phylums. H. 

volcanii and T. kodakarensis belong to Euryarchaeota. This particular family has been 

reported as presenting more similarities to Eukaryotes1. Additionally, S. solfataricus is 

included in the Crenarchaeota, being known for sharing more similarities towards 

bacteria. 

The original data contains 1001 nucleotides per sequence which contain experimentally 

verified promoters with their Transcription Start Site (TSS) mapped. Only primary TSS 

(pTSS) was considered because of data abundance. Next, a sub-sequence containing 100 

nucleotides, i.e. -80 to +20 was extracted. This region comprises the reported core 

promoter 11, 12. The core promoter has been reported as sufficient to initiate transcription in 

archaea12. Furthermore, the precise location of these organism's promoters was reported 

to be located in the proposed range 12, 13. In addition, promoters from the three organisms 

tested in this study had their promoters located in the aforementioned areas 8, 9, 10. 

 

2.2 Control datasets 
 
The classification methods of this study were stressed with three forms of control. First, 

we, through a self-developed Python script, shuffled the 100-nucleotides original 

sequences. A second control dataset was by selecting the downstream sequences from 

+21 to +121. By this, we wanted to test the validity of our method by assessing sequences 

that do not indicate promoter activity nor have a TATA-box. Third, and finally, we 

followed the approach proposed by 14 to perform a second method for shuffling sequences. 

We divided our 100 nucleotide sequences into 5 blocks of 20 nucleotides each, then, we 

shuffled each one of the blocks. By doing this, we would preserve consensual motifs such 

as TATA-boxes in a way that our identification method is tensioned. 

 

2.3 Structural parametrization  
 
The totality of the sequences of this study (promoters and controls) have been submitted 

through a structural coding in order to represent genetic information into numeric 

attributes. This process has shown promising and is reflected in the capture of specific 
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regulatory regions such as promoters15. The parameter chosen for this study is DNA 

Duplex Stability (DDS). This particular feature has been employed as a way to represent 

the richness of GC base-pairs due to their extra hydrogen bond 16-20. 

Equation 1 was employed in the calculation of the DNA duplexes reported in18. It hinges 

on the assignment of a numeric attribute in sliding dinucleotide windows. 

𝐺 = 	∆7,7I*D     (1) 

 

2.4 Classification through a statistical approach 
 
Firstly, position-specific slices of 8 nucleotides (6, 2 spacer, 2) were extracted and 

averaged in each dataset (promoters, three controls). Then, an interval was set ranging 

from the plus and minus values of the standard deviation formed upon the promoter 

dataset (Equation 2). 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 	𝑀𝑒𝑎𝑛xyz(zH{y ± 𝑠𝑡𝑑𝑒𝑣xyz(zH{y		(2) 

 

Finally, a sequence was labeled as a promoter if its TATA+BRE nucleotides belongs to 

the rangeInterval. Otherwise, it was classified as a non-promoter. A visual representation 

of the statistical method for classifying archaeal promoter sequences is available at: 

https://doi.org/10.5281/zenodo.5154110. 

 

 

 

2.5 Classification through an artificial neural network approach 
 

In order to grant validation to the simulation process, a k-fold-cross validation method 

was employed, where k=10. This method involves in reserving 1/10 of the dataset to be 

used in the testing. The training is done with the remaining 9/10 shares. This grants that 

any biased data point gets covered. The validation process was done following the sample 

method in R 21. 

Artificial Neural Network (ANN) simulations took place in the R environment through 

the neuralnet package 22. The algorithm chosen to fit the ANN was the resilient 

backpropagation, since it has already succeeded in classifying genomic data 23. The 

number of neurons in the hidden layer was set to 2 since a too complex curve to fit data 

points might be seen as a non-productive decision in machine learning 24. The number of 



 83 

iterations over the training dataset, i.e. epochs, was increased until the validation and 

training errors kept dropping 25. Finally, the maximum number of steps the ANN was 

allowed to reach until convergence was 200000 as an attempt to balance computational 

costs. The R script that performed the ANN simulation is available at. 

 

2.6 Validation of the methods 
 
In order to provide validation for the methods proposed in this study, upstream sequences 

whose promoter activity has not been encountered yet have been selected in the RSAT 

prokaryotic database. Two archaea have presented a promoter-like profile26: 

Aciduliprofundum boonei and Thermofilum pendens. Hence, the method proposed in this 

study aimed to hand in a regulatory annotation upon these two organisms. The 

nonparametric Kruskal Wallis test was employed in order to prove if the groups of 

experimental and potential promoters hold statistical differences. Finally, lists of 

annotated potential promoters of these two organisms have been provided. 

 

3 RESULTS 
 
3.1 DNA duplex stability parametrized archaeal promoters differ from control 
sequences 
 
In order for getting the binding sites of transcription factor proteins represented by DNA 

Duplex Stability (DDS), genetic information was coded into this attribute. Promoter 

sequences have already been well represented by DNA duplex stability (DDS) 16. 

Concerning the coding of genetic information into DDS as well as locating areas of 

interest for turning promoters unmatched, Figure 1 has been provided. The plotting of 

promoter sequences and their control reveal peculiarities in the true sequences (Figure 1) 

in a way that the line representing promoters differs from the three levels of control. 

Secondly, two distinctive signals are observed in the promoter line, i.e. around position -

28 and in the range of -10 to +1. 

[FIGURE 1] 

 

3.2 Statistical classification succeeds in distincting promoter sequences 
 
In order to promote a classification method, Table 1 was created containing the mean 

values of TATA+BRE sites of promoter sequences as well as three levels of control 

converted into DDS. In every observation, the average of the promoter sequence differs 
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from the three levels of control, where the closer from the promoter score is the shuffled 

sequence, followed by the downstream, and finally, the block shuffling process. 

 

[TABLE 1] 

 

Table 1 enables the statistical form of classification included in this study. The promoter 

interval was ranged and all the sequences got their data classified into promoter or non-

promoter. The results were then computed on a confusion matrix (Table 2), from which 

the precision value remains the same in every organism, since it's calculation relies on 

positive values. The assessment of Table 2 indicates a higher recall value. The most 

satisfactory scores were achieved by the block form of control whilst the last was found 

in shuffled sequences. 

 

[TABLE 2] 

In an attempt to stress the statistical method more, a cross-organism classification was 

conducted. In this form, the rationale of one archaeon is tested to classify data from 

another archaeon. In this sense, Table 3 was created, whose results have indicated a 

similar logistic towards S. solfataricus and T. kodakarensis and also, a high recall value 

when H. volcanii data was classified with the other two archaea principles. 

[TABLE 3] 

 

3.3 Artificial Neural Network conveys a sturdier classification 
 

In order to achieve a more robust classification score, Artificial Neural Networks (ANNs) 

were used. In the ANN simulation, the architecture that protruded satisfactory scores 

follows: i) seven neurons in the input layer; ii) two neurons in the hidden layer and; iii) 

one neuron in the output layer. Table 4 indicates the results achieved by the ANN 

simulation. Table 4 was achieved with a default tradeoff value of .5 in computing the 

output of the model. In order to observe the behavior of the outcomes with different 

values, a ROC (Receiver Operator Characteristic) curve was presented (Figure 2). 

 

[FIGURE 2] 

A second application of ANNs was conducted in order to test the hypothesis that the 

pattern of one archaeon might be employed to classify another. Following this rationale, 
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a new simulation was achieved in which the ANN is trained with one organism and tested 

with another. The results of this new simulation are available in Table 5, from which there 

is a leaning towards S. solfataricus and T. kodakarensis. The H. volcanii logistics could 

have proven satisfactory in identifying promoters from other organisms. 

 

3.4 ANN and statistics employed in finding potential archaeal promoters 
 

Upstream regions of Aciduliprofundum boonei and Thermofilum pendens were selected 

in order to extract potential promoters from. The statistical and ANN models found in S. 

solfataricus and T. kodakarensis were employed in the validation dataset. H. volcanii was 

left out due to its unparalleled AT content; such inclusion would have jeopardized the 

validation. An upstream region was considered as a promoter if the statistics of S. 

solfataricus and T. kodakarensis and the ANN of S. solfataricus and T. kodakarensis 

flagged the given sequence as a promoter. From the 742 and 1927 sequences from A. 

boonei and T. pendens, respectively, the method encountered 145 promoters of the 

Euryarchaea and 243 promoters of the Crenarchaea. The lists containing sequence ID and 

the nucleotides are available at. 

A final attempt to validate the newly identified promoters aimed to compare them with 

experimentally verified promoters. Hence, Figure 2 holds information of the DDS profile 

of A. boonei and T. pendens as well as the other three archaea. In Figure 3, there is a 

conserved region in the binding site of TBP, TFB and TFE proteins for all observations. 

A statistical analysis of the slice -40 to -1 of Figure 2 was provided in Figure 4, from 

which unannotated promoters of A. boonei resemble the averages of S. solfataricus, while 

T. pendens match T. kodakarensis. The whole analysis of the datasets present a p=3.241^-

14.  

[Figure 3] 

[Figure 4] 

4 DISCUSSION 
 
4.1 Distinctive signals matches archaeal TFBS 
 
The analysis of Figure 1 has portrayed the site of binding of basal transcription factor 

(TF) proteins. In fact, the archaeal open complex formation is initiated by a TATA-box 

Binding Protein (TBP) and a Transcription Factor IIB protein (TFB) 27, 28. Moreover, a 

second strong signal was observed around positions -10 and +1, matching the Proximal 
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Promoter Element, an area where the Transcription Factor Protein E (TFE) acts and helps 

in order to optimize a Pre-Initiation Complex (PIC) formation 3. Thus, the DDS 

conversion of archaeal promoters reveals TFBS as it has previously been reported 26. 

 

4.2 Statistical classification  
 
The statistical method of classification reported in this study has proven satisfactory in a 

way that it did not employ techniques encompassing machine learning. Firstly, the low 

recall value the method presented suggests the model underperformed in classifying False 

Negatives, this agrees with the diversification found in archaea 5. Secondly, the most fine 

counts were achieved in the block form of control, matching the identification of Table 

1, in which the means of the blocks are the furthest from the promoters. Additionally, the 

method has presented fine scores regarding recall, a metric that is sensible towards False 

Negatives. This phenomenon is explained due to the presence of TBP+TFB + TFBS being 

reported as key elements to convey archaeal transcription 26. The stress of the statistical 

model, brought by an inter-archaea classification, similarities have been found in S. 

solfataricus and T. kodakarensis, confirming what was proposed by Takemasa et al 

(2011) 29 in order to turn T. kodakarensis and S. solfataricus as regulatory chassis for 

hyperthermophilic archaea. Hence, the statistical method proposed in this work poses a 

promising way to encounter archaeal promoters. 

 

 

4.3 ANN classification 
The results brought by the ANN classification suggest the model succeeded in classifying 

archaeal promoters, distincting them from three variations of control. In fact, this machine 

learning approach has succeeded in encountering promoters 14, 19, 20. By outshining the 

statistical classification, the mathematical robustness of the ANN method 30 has proven 

uneven. Also, the rationale found in such method has matched the statistical 

classification, but overcame it. A good indicator to observe prediction validity is brought 

by ROC curves, which plots the specificity cost in gaining more recall 31. The most evident 

characteristics are observed in the block control, which is found in the upper left corner 

of the plotting areas, confirming what the statistical analysis has found. 

The verification of inter-organism rationale of classification has evidenced that S. 

solfataricus and T. kodakarensis share similarities, evidenced by the level of 

classification between these two archaea. Additionally, the ANN trained with H. volcanii 



 87 

has outperformed the statistics classification and protruded a satisfactory way to 

encounter promoters of other organisms despite the higher GC content this organism 

promoters' have 26. 

 

4.4 Validation  
Potential promoters of A. boonei and T. pendens are a byproduct of this study. Due to 

many factors such as the diversity of archaea, their relatively recent discovery creates the 

need for high quality genome annotation. This is the moment when in-silico approaches 

provide help to experimental biology by curating data 17. The boxplots portrayed in Figure 

3 showed two groups of organisms. No taxonomic inferences could be made upon these 

since T. kodakarensis and A. boonei are Euryarchaea while S. solfataricus and T. pendens 

belong to the Crenarchaeota division, the statistical resemblance of these organisms 

require further analysis. We also suggest using the model of H. volcanii in order to locate 

promoters in archaea that have high AT content. The statistical similarity found between 

verified and potential promoters advocate the robustness of the method proposed.  

 

5 CONCLUSIONS 
 

The results gathered on this study reflect a novel way of encountering promoter sequences 

in unannotated archaeal genomes through a combination of artificial neural networks and 

statistics. The structural parametrization of genetic information has been able to locate 

key areas within upstream regions, areas that were successfully classified and its 

knowledge provided a new dataset of potential promoters of A. boonei and T. pendens. 
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TABLES 
 
Table 1 - Flagships of archaeal classification based on statistics 
 
 Promoters Standard deviation Blocks Downstream Shuffled 

H. volcanii -8.36 ±1.15 -11.66 -11.44 -10.66 

S. solfataricus -6.72 ±0.85 -8.87 -8.58 -8.73 

T. kodakarensis -7.13 ±0.93 -10.16 -10.07 -9.28 
 

Table 2 - Results of the statistical method of classification 
  Accuracy (%) Precision (%) Recall (%) Specificity (%) 

H. volcanii 
Blocks 79.13 67.81 87.64 73.76 

Downstream 78.76 67.81 86.8 73.6 

Shuffled 72.04 67.81 74.06 70.33 

S. solfataricus 
Blocks 78.55 77.44 79.19 77.93 

Downstream 78.22 77.44 78.65 77.8 

Shuffled 78.55 77.44 79.19 77.93 

T. kodakarensis 
Blocks 81.37 70.11 90.48 75.6 

Downstream 81.16 70.11 90.02 75.52 

Shuffled 74.63 70.11 77.09 72.59 
 

Table 3 - Results of the inter-organism statistical method of classification 
  H. volcanii S. solfataricus T. kodakarensis 

H. volcanii 

Accuracy (%) - 61.68 68.92 

Precision (%) - 24.7 40.89 

Recall (%) - 95.05 93.34 

Specificity (%) - 56.71 62.11 

S. solfataricus 

Accuracy (%) 32.17 - 78.44 

Precision (%) 21.78 - 77.44 

Recall (%) 27.51 - 79.01 

Specificity (%) 35.23 - 77.88 

T. kodakarensis 

Accuracy (%) 50.47 82.9 - 

Precision (%) 40.62 72.43 - 

Recall (%) 50.99 91.86 - 
Specificity (%) 50.21 77.17 - 
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Table 4 - Results of the ANN-based classification. 
  Accuracy (%) Precision (%) Recall (%) Specificity (%) 

H. volcanii 
Blocks 92.48 93.05 92.03 92.96 

Downstream 91.08 90.67 91.45 90.77 

Shuffled 84.55 84.86 84.27 84.94 

S. solfataricus 
Blocks 89.03 91.43 87.01 91.18 

Downstream 87.36 86.93 88.23 86.48 

Shuffled 86.63 84.56 88.27 85.17 

T. kodakarensis 
Blocks 94.96 93.39 96.21 93.83 

Downstream 91.35 91.69 91.31 91.46 

Shuffled 86.46 84.1 89.12 84.36 
 

  H. volcanii S. solfataricus T. kodakarensis 

H. volcanii Accuracy (%) - 70.63 81.61 

Precision (%) - 41.75 66.56 

Recall (%) - 95.95 94.68 

Specificity (%) - 63.89 74.72 

S. solfataricus Accuracy (%) 66.51 - 86.46 

Precision (%) 98.89 - 95.45 

Recall (%) 60.87 - 81.04 

Specificity (%) 96.23 - 94.42 

T. kodakarensis Accuracy (%) 75.42 82.48 - 

Precision (%) 97.52 71.56 - 

Recall (%) 68.9 91.48 - 

Specificity (%) 94.34 77.01 - 
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Figures 
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6 CONCLUSIONS 
Archaea have been discovered to be a unique domain not long ago. There are many 

hypothesis being tested in order to understand how eukaryotes evolved and the 

comprehension of archaeal mechanisms might play an important role on this 

achievement. 

In this thesis, through a characterization of archaeal promoter elements, it was 

possible to show the dissimilarities these organisms have in their transcription factor 

binding sites. Moreover, a conversion of genetic information into structural parameters 

was able to provide different analysis where a primary sequence inspection failed. 

The results gathered in this thesis are being employed in order to create a predictor 

of archaeal promoter sequences, based both on statistics and machine learning. 

The discovery of archaeal genetic mechanisms such as their broader comprehension 

is still an important mark in bioinformatics. The advances of computer science enable 

hypothesis formulation and testing. 

Therefore, the quest of exploring the unknown, i.e. archaea, remains. Through the 

curated results achieved in this thesis it was possible to shed some light and continue the 

endeavor to explore the innards of microbiology.  
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