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Abstract

The relative stability between the crystal structure of 𝛼-F2, space group 𝐶2/𝑐, and a hypothesized
highpressure phase, space group 𝐶𝑚𝑐𝑒, was explored using Density Functional Theory at the
PBE0+D3(ABC)/TZVP level of theory and further assessed by Quantum Monte Carlo calculations.
The analysis of the phonon dispersion spectra reveals that, at ambient pressure, besides the energy
difference favoring the 𝐶2/c structure, the 𝐶𝑚𝑐𝑒 phase also presents a dynamical instability near
the Γ-point, which disappears with increasing pressure. The unstable vibrational mode can be
related to the absence of 𝜎-holes in the fluorine molecule, which renders a repulsive head-to-
head interaction between molecules, as opposed to heavier halogens, in which the presence of
𝜎-holes stabilizes the orthogonal 𝐶𝑚𝑐𝑒 structure. The results show that the pressure-induced phase
transition 𝐶2/𝑐 → 𝐶𝑚𝑐𝑒 is of second-order.

Keywords: fluorine; second-order phase transition; ab initio simulations; solid state physics;



Resumo

A estabilidade relativa entre a estrutura cristalina do 𝛼-F2, grupo espacial𝐶2/𝑐, e uma fase hipotética
de alta pressão, grupo espacial 𝐶𝑚𝑐𝑒, foi explorada usando a Teoria da Funcional da Densidade no
nível de teoria PBE0+D3(ABC)/TZVP e posteriormente avaliada por meio de cálculos de Monte
Carlo Quântico. A análise dos espectros de dispersão de fônons revela que, à pressão ambiente,
além da diferença de energia favorecendo a estrutura 𝐶2/c, a fase 𝐶𝑚𝑐𝑒 também apresenta uma
instabilidade dinâmica próxima ao ponto Γ, que desaparece com o aumento da pressão. O modo
vibracional instável pode estar relacionado à ausência de buracos 𝜎 na molécula de flúor, o que
resulta em uma interação repulsiva cabeça-cabeça entre as moléculas, ao contrário dos halogênios
mais pesados, nos quais a presença de buracos 𝜎 estabiliza a estrutura ortogonal𝐶𝑚𝑐𝑒. Os resultados
mostram que a transição de fase induzida pela pressão 𝐶2/𝑐 → 𝐶𝑚𝑐𝑒 é de segunda ordem.

Keywords: flúor; transição de fase de segunda ordem; simulações ab initio; física do estado sólido;
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Prologue

Amidst my wandering thoughts, darkness engulfs me.

Suddenly, I hear hastened footsteps reverberating in what seems to be a subterranean chamber.
When my eyes open, I perceive an aged stone ceiling and a man busily pacing around in the chilly,
decrepit room. He is rummaging through heaps of books and tools, collecting a few items. So
focused is he that he scarcely notices my awakening.

"Good, you have awakened!" exclaimed the lean man, sporting a conical hat and circular glasses
resting upon a sagacious face. His voice was tranquil, uncharacteristic of his energetic movements.
"Have you not heard? The beast has reawakened! Let us move!" he adds, visibly perturbed.

Bewildered and sensing the urgency of the situation, I hastily rise to my feet, my eyes striving to
bring everything into focus. The chamber, circular in shape, is filled with a biting chill and stagnant
air. Bubbling jars and peculiar instruments everywhere. At the heart of the chamber lies an immense
desk, forged from solid steel and burdened with an array of books and parchment filled with
intricate equations. A fine assortment of quills and ink bottles adorns its surface. Adjacent to the
desk, a great blackboard bears cryptic symbols, diagrams, and formulae. It is certainly a laboratory.
With his lengthy cloak sweeping the stone floor, he admonishes me to follow him.

"Hurry, we have much work and scarce time. This beast is no easy foe", he says, darting between cabinets.

"What must we do?" I inquire.

"We must understand it better. For decades, all have left it to slumber, fearing it. But now, we have no other
choice," he replies.

"Very well, but how?" I ask, searching for something to combat this beast. As I approach a corner to
retrieve some old, dusty swords, he halts me.

"No, no, no, my dear friend. This beast cannot be defeated with common tools. We require a different tactic.
This thing is small but dangerous, for everything it touches bursts into flames," he warns. The man is
still focused on gathering his belongings, mostly books, and other unknown objects. He enlists my
aid.

"Come, help me with these things. We must utilize all the resources at our disposal. Please grab this crate," he
instructs, handing me a wooden container filled with bell-shaped objects crafted from iridescent
glass. Inscribed on the side of the crate is the word "Basis."

I stand there, attempting to comprehend the situation. The man reaches for a large jar atop a shelf
and mutters to himself,

"I shall take these functional herbs. Hopefully, the hybrid ones will suffice." He seizes the container
brimming with dried roots, labeled "Hybrid PeeBeeYee roots."



With the jar tucked under one arm and a stack of books under the other, he strides toward the
ponderous wooden door. He glances at me before opening it.

"Are you coming or not?" he queries impatiently. Still reeling from the unexpected events, I hasten
after him, clutching the bell-shaped objects. Doubt momentarily seizes me, and I pause to inquire,

"What is this beast called?"

The man, already outside and hastening down the corridor, yells back,

"It is called fluorine!"
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Abstract: All-electron density functional theory calculations were performed aiming to determine the
equation of state and the dependence with pressure of the 𝑐/𝑎 ratio and the anisotropic compressibility for
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the resulting total energy versus volume is well described by a Vinet equation of state with 𝐵0 = 367(5) GPa
and 𝐵′0 = 4.64(3), valid up to 1.5 TPa. The agreement with two recent experimental studies [S. Anzellini et al.,
Equation of state of rhenium and application for ultra high pressure calibration, J. Appl. Phys. 115, 043511
(2014); T. Sakai et al., High pressure generation using double-stage diamond anvil technique: Problems and
equations of state of rhenium, High Pressure Res. 38, 107 (2018)] supports their conclusion that the pressure
in previous experiments with a double-stage diamond-anvil cell [L. Dubrovinsky et al., Implementation of
micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar, Nat. Commun. 3, 1163 (2012)] was
significantly overestimated.
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1 Introduction*

The study of fluorine compounds dates back at least to the early
16th century when the mineral fluorite (Figure 1.1) was described by
the German physician and mineralogist Georgius Agricola [9, 10].
Crude hydrofluoric acid was first prepared in the mid-18th century.
An almost anhydrous acid was prepared in 1809, and two years
later, the French physicist Andre-Marie Ampère suggested that it
was a hydrogen compound with an unknown element, analogous
to chlorine, for which he suggested the name of fluorine [9, 10].
Even though the existence of this element was well known for
many years after that, all attempts to isolate it were unsuccessful
and even lethal for some of the chemists who pursued element
number 9. Fluorine isolation did not occur until 1886 when the
French chemist Ferdinand Frederick Henri Moissan separated the
element by electrolysis [9, 11, 12]. Due to its extreme reactivity,
isolation of fluorine only occurred 112 years after chlorine isolation
by Scheele and about 70 years after the preparation of elemental
bromine and iodine [12]. The 1906 Nobel Prize in Chemistry was
awarded to Henri Moissan "in recognition of the great services rendered
by him in his investigation and isolation of the element fluorine, and for
the adoption in the service of science of the electric furnace called after
him" [13].

Figure 1.1: Fluorescing fluorite
from Boltsburn Mine, Weardale,
North Pennines, County Durham,
England, UK. (A) under white light
and (B) under UV light.
By Didier Descouens -
Own work, CC BY-SA 4.0,
https://commons.wikimedia.
org/w/index.php?curid=7528654

Fluorine forms diatomic molecules (F2) and is in a gaseous state
at room temperature and pressure. At ambient pressure, fluorine

* Ferdinand Frederick Henri Moissan next to the electric furnace of his own
design.

https://commons.wikimedia.org/w/index.php?curid=7528654
https://commons.wikimedia.org/w/index.php?curid=7528654


2 1 Introduction

Figure 1.3: Phase diagram of fluo-
rine published in 1975 [20].

Figure 1.4: Phase diagram of F2. (△)
𝛼-F2; (□) 𝛽-F2; (combined △ and
□) 𝛼-𝛽 two-phase region; (•) fluid.
Dashed lines represent Simon equa-
tion fits to the transition lines. Taken
from [19]

condenses in a bright yellow liquid at 85 K [9, 14] and solidifies at
53.5 K forming a cubic structure called 𝛽-fluorine [15]. This phase
is transparent and soft, with a significant molecular disorder. The
proposed space group was assumed to be 𝑃𝑚3𝑛, although data
analysis suggests space group 𝑃4̄3𝑛 as a possible alternative. There
are eight fluorine molecules per unit cell which are in constant
rotations around their center of mass, as depicted in Figure 1.2. In
the paper in which the crystal structure of 𝛽-F2 was proposed from
X-ray diffraction data, the authors comment on the difficulty of the
experiment. In their words, the diffraction pattern was “obtained
from one very good single crystal grown with considerable difficulty from
one of the best samples”[15]. This phrase illustrates the hardship
which is characteristic of experimental studies with fluorine. At
that time, fluorine was the only stable element without a known
crystal structure.

Figure 1.2: Crystalline structure
of beta fluorine. The diatomic
molecules at the corners and cen-
ter of the cubic unit cell rotate freely
while the molecules on the faces of
the cube rotate confined on a plane
perpendicular to the face of the unit
cell.

At 45.6 K and ambient pressure, fluorine transforms from cubic
𝛽-F2 to a low-temperature monoclinic phase (𝛼-F2), space group
C2/c, with four F2 molecules per unit cell [16]. This phase is opaque
and hard, with layers of fluorine molecules almost in hexagonal
close-packing. This solid-solid transition is highly energetic, which
caused all the experimental endeavors even more complex. The
first determination of the crystal structure of the alpha phase was
only possible after a 24h passivation process of the copper sample
holder. This avoided "the earlier difficulties with explosions occurring
when solid samples were being cooled through the transition at 45 K".
A second difficulty was observed when trying to make a fine
powder for diffraction from the samples of the alpha phase, as
"any attempt to crush it when in the 𝛼 form caused an explosion"[17].
The experimental results revealed that the 𝛼 phase belonged to
the 𝐶2/𝑚 space group, although 𝐶2/𝑐 was also a possible space
group. A few years later, Pauling supported the 𝐶2/𝑐 space group
by reanalyzing the same experimental data [18]. Investigating
elemental fluorine in experiments is particularly challenging due
to its high reactivity and low atomic number. For many years, this
was basically everything known about the solid phases of fluorine,
seen by the phase diagram of fluorine from 1975 in Figure 1.3. In
1987, a Raman study by Schiferl et al. expanded the phase diagram
of fluorine up to 6 GPa, whose results can be seen in Figure 1.4
[19].

Both 𝛼- and 𝛽-fluorine are formed by weakly interacting F2

molecules. The 𝛼-F2 phase is remarkable for assuming a space
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1: The group 𝐶𝑚𝑐𝑎 (N. 64) was re-
labeled 𝐶𝑚𝑐𝑒 in the fourth edition
of the International Tables of Crys-
tallography

Figure 1.5: Electrostatic potential
surfaces mapped onto total electron
density for the chlorine, bromine,
and iodine diatomic molecules.
Adapted from [22]

group different from all the other halogens, whose structures
belong to the orthorhombic 𝐶𝑚𝑐𝑒1 space group [17]. Heavier halo-
gen atoms possess an anisotropic electrostatic potential, a direct
consequence of the electron deficiency of the 𝑝𝑧 orbital. When
a 𝜎 bond is formed, a region of positive electrostatic potential
appears on the other hemisphere of the atom, called the 𝜎-hole.
The positive 𝜎-hole will then interact with negative regions of
neighboring molecules [21]. Chlorine, bromine, and iodine assume
a structure in which the diatomic molecules arrange themselves in
zig-zag chains, mainly stabilized by 𝜎-holes interacting with nearby
molecules, counteracting electronic repulsion and originating a
slightly more compact crystalline structure. The 𝜎-hole in chlorine,
bromine and iodine calculated using the M06-L functional with a
LANL2DZdp ECP basis set in the Gaussian09 package is shown
in Figure 1.5.

The 𝜎-hole interaction is much weaker (or even absent) in fluorine,
and repulsion is stronger thus making the 𝐶2/𝑐 more stable for
avoiding head-to-head interactions between the diatomic molecules
[23], as shown in Figure 1.6. Furthermore, both structures are
related by a shear strain along the 𝑎 axis.

A delicate balance exists between the different energy contribu-
tions when comparing the structures with 𝐶𝑚𝑐𝑒 and 𝐶2/𝑐 space
groups. Results from periodic linear scaling, local second-order
Møller–Plesset perturbation theory (p-LMP2) calculations, includ-
ing ZPE corrections and correlation effects (the latter estimated
using the method of increments), suggest that the electrostatic
and exchange interactions sum up to a less repulsive cohesive
energy in the 𝐶2/𝑐 structure [23]. On the other hand, correlation
interactions go in the opposing direction, making a less repulsive
contribution to the 𝐶𝑚𝑐𝑒 phase. Lastly, the ZPE is lower in the
𝐶2/𝑐 phase, and the net difference in internal energy between
the two phases was reported to amount to only 124 µ𝐸h/atom at
zero temperature and pressure [23]. Such a slight difference in
energy, added to the fact that the 𝐶𝑚𝑐𝑒 phase is slightly more
compact, makes it reasonable to hypothesize a pressure-induced
𝐶2/𝑐 → 𝐶𝑚𝑐𝑒 phase transition.

The transition from 𝛼-F2, 𝐶2/𝑐 space group, to a high-pressure
phase with the 𝐶𝑚𝑐𝑒 space group, isotypical of the other halo-
gens, has never been observed experimentally. The previously
mentioned Raman study found no evidence of a pressure-induced
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Figure 1.6: Comparison between the
crystalline structures of 𝛼-F2, space
group C2/c, the hypothetic high-
pressure phase, space group Cmce.
The parallelograms indicate the con-
ventional unit cell. The C2/c struc-
ture avoids the head-to-head inter-
action between the molecules and is
related to the Cmce structure by a
shear strain along the 𝑎 axis. We have
used light shade to convey depth.

phase transition, even though they were particularly interested in
observing a phase of 𝐶𝑚𝑐𝑒 space group. In Schiferl et al.’s words,
"The F2 vibron shows no anomalous behavior, and F2 does not go to the
typical 𝐶𝑚𝑐𝑒 halogen crystal structure".

Computationally, the 𝐶𝑚𝑐𝑒 structure shows up recurrently in
structure search studies as the stable phase in high pressure and
the 𝐶2/𝑐 → 𝐶𝑚𝑐𝑒 transition pressure estimates vary from 5 up
to 70 GPa. The transition from 𝛼-F2 to a high-pressure phase was
first investigated using Density Functional Theory (DFT) and a
structure-search algorithm by Lv et al[24]. The study successfully
confirms the thermodynamically stable𝐶2/𝑐 phase at low-pressure,
which is more likely the space group for fluorine compared to
𝐶2/𝑚, especially considering the observed dynamical instability
in the calculated phonon spectra of the 𝐶2/𝑚 structure. At around
8 GPa, C2/c transforms to a high-pressure 𝐶𝑚𝑐𝑒 phase, remaining
stable up to 100 GPa. The electronic band structures and density
of states indicate that both 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 are insulators. The
nonmetallic property of 𝐶𝑚𝑐𝑒 fluorine stands in stark contrast
to other halogen crystals that possess this space group structure.
For instance, pressure-induced metallization occurs in 𝐶𝑚𝑐𝑒 io-
dine at 20.6 GPa[25], and molecular 𝐶𝑚𝑐𝑒 bromine undergoes an
insulator-to-metal transition with band overlap at 55 GPa. Even so,
the band gap in solid fluorine decreases with pressure, indicating
that a transition from an insulator to a metal might be its final
fate at high enough pressures. It is worth mentioning that this
fluorine study employed the PBE exchange-correlation functional,
which is not the best choice for determining the band gap in solids.
However, considering that the estimated values are well above
2 eV and the PBE functional is known to underestimate the band
gap[26], we have strong indications that fluorine is an insulator in
a large range of pressures.

More recently, Olson et al. used a search algorithm that incorporates
symmetry and geometric constraints to search for new structures
of chlorine and fluorine [27]. Even though their work mainly
focuses on chlorine, they found 𝐶𝑚𝑐𝑒 fluorine becomes stable at
70 GPa, a pressure much higher than Lv et al. suggested. This work,
which also employs the PBE XC functional, predicts that the 𝐶𝑚𝑐𝑒
phase is stable and an insulator up to 2.5 TPa, after which fluorine
transitions to a metallic phase of 𝑃42/𝑚𝑚𝑐 space group. For much
higher pressures, at 30 TPa, not even fluorine can escape the final
destiny of all elements to become an atomic phase. Interestingly,
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this final phase, space group 𝐹𝑑𝑑𝑑, as well as some intermediate
phases, seem to become superconductors at temperatures of a few
kelvins above 1 [28].

A third estimate for the pressure of transition was placed at 5 GPa in
a computational study that employed the SCAN-rVV10 exchange-
correlation potential [29]. This work presents particularly bold
claims about the nature of the 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 phases of fluorine,
such as that, albeit being molecular solids, both phases are metallic,
even at ambient pressure, and that increasing pressure induces
the formation of 𝜎-holes in the fluorine’s molecules. The metallic
nature, i.e. non zero electronic density of states at the Fermi level,
of this molecular crystal in this latter work seems quite strange and
this odd result was not particularly addressed by the authors.

In none of the studies previously mentioned has the nature of the
𝐶2/𝑐 → 𝐶𝑚𝑐𝑒 transition been explored in greater detail, which is
what this work proposes to do.

Two of the works mentioned above employed the Perdew–Burke-
Ernzerhof (PBE) exchange-correlation functional in their DFT
calculations, with no account for dispersion energy contributions,
whereas the third applies the SCAN+rVV10 exchange-correlation
functional. Despite the much higher computational cost, we chose
the hybrid functional PBE0 (including a contribution from an
exact Hartree-Fock exchange term) to investigate the 𝐶2/𝑐 →
𝐶𝑚𝑐𝑒 phase transition in fluorine, as it has been successfully
used in the computer investigation of fluorine before [30]. In this
functional, 25% of the exchange energy is calculated exactly using
Hartree–Fock theory. Furthermore, a computationally efficient way
to account for the missing long-range correlation interactions in
standard DFT is to add, a posteriori, an energy dispersive term that
is dependent solely on the interatomic distances. Grimme’s DFT-D3
is one of these methods, which includes dipole-dipole, dipoles-
quadrupoles, and three-body dipolar Van der Waals interactions in
an expression with fixed empirical dispersion coefficients [31]. The
combination of dispersion corrections and this hybrid functional
has shown a good trade-off between accuracy and performance
[32]. An additional step towards including correlation effects in
first-principles calculations of solids is to resort to Quantum Monte
Carlo (QMC) methods [33, 34]. Diffusion Monte Carlo (DMC),
in particular, has been shown to be well suited to classifying
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different polymorphs of molecular crystals according to their
relative stability [35, 36].

In this work, hybrid functional DFT calculations is applied to solid
molecular fluorine at zero pressure and temperature to assess the
relative stability of these two candidate structures, which is further
checked by DMC calculations. Finally, the nature of a possible
pressure-induced phase transition between these two structures is
explored using group-theoretical tools and DFT calculations.



Theoretical Digression





2 Setting the stage

Atomic units

Atomic units are a system of nat-
ural units frequently employed
in ab initio simulations of materi-
als including electronic structure
calculations. They are designed
to simplify the equations and
expressions used in these calcu-
lations by setting fundamental
physical constants to unity. In
atomic units, the electron mass
(𝑚𝑒 ), the electron charge (𝑒), the
reduced Planck constant (ℏ), and
the Bohr radius (𝑎0) are all equal
to 1. Then, the Coulomb constant
( 1

4𝜋𝜖0
) also becomes 1, and we

define the unit for the energy,
called Hartree (𝐸ℎ = ℏ2

𝑚𝑒 𝑎
2
0
). Con-

sequently, the equations describ-
ing the behavior of electrons and
nuclei become much simpler.

Already know the mathematics? No problem!

The part titled "Theoretical Digression" offers a summary of the
formalisms utilized in this study and is optional for those who
are already familiar with it.

We start with the foundational postulate of quantum mechanics,
which states that a wavefunction, denoted as Ψ, exists for any
(chemical) system. By applying appropriate operators to Ψ, we can
obtain the observable properties of the system. The Schrödinger
equation is the cornerstone of theoretical chemistry, where an
operator acts on Ψ to yield the system’s energy, denoted as 𝐸. This
equation can be expressed as an eigenvalue equation:

�̂�Ψ = 𝐸Ψ (2.1)

where �̂� is the Hamiltonian operator, Ψ is the wave function
(eigenfunction for a given Hamiltonian) and 𝐸 is the energy of the
system. The typical form of the Hamiltonian operator considers
five contributions to a system’s total energy: the kinetic energies
of the electrons and nuclei, the attraction of the electrons to the
nuclei, the repulsion between nuclei, and the repulsion between
electrons. In more complicated situations such as an external
electric or magnetic field, considering the relativistic effects, etc.,
other terms are required in the Hamiltonian. So, the Hamiltonian
can be expressed in atomic units as;
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1: The mass of hydrogen’s nucleus
is 2000 times greater than the mass
of the electron

𝐻 = −
∑
𝑖=1

1
2
∇2
𝑖 −

∑
𝐴

1
2𝑀𝐴

∇2
𝐴 −

∑
𝑖

∑
𝐴

𝑍𝐴

𝑟𝑖 ,𝐴
+
∑
𝑖

∑
𝑗>𝑖

1
𝑟𝑖 , 𝑗

+
∑
𝐴

∑
𝐵>𝐴

𝑍𝐴𝑍𝐵

𝑟𝐴,𝐵

(2.2)

Biased notation

The notation Ψ(𝑥) is biased to-
wards the position representa-
tion of the wavefunction. The
wavefunction should be thought
of as a property of the system
that can assume several repre-
sentations expressed as func-
tions over different scalar fields,
such as position (and spin), mo-
mentum, and even energy. None
of these representations carry
more or less information. The
use of Dirac notation might re-
duce this bias, in which the wave-
function is written as the ket vec-
tor |Ψ⟩. A great and concise for-
malism of quantum mechanics
that praises the use of Dirac’s
notation can be found in the lec-
tures notes of Professor R.G. Lit-
tlejohn [37]

The above equation is in atomic units for simplicity. Its terms rep-
resent the kinetic energy of electrons, the kinetic energy of nuclei,
the coulomb attraction between electrons and nuclei, repulsion
between electrons, and repulsion between nuclei, respectively. The
indices 𝑖 and 𝑗 run over the electrons, and 𝐴 and 𝐵 run over the
nuclei. The wave function Ψ describes the system and takes as
variables the coordinates in configuration space 𝑥 of 𝑁 electrons
and 𝑀 nuclei in the system, leading to the following equation:

�̂�Ψ(𝑥𝑖 , . . . , 𝑥𝑁 , 𝑥𝐴 , . . . , 𝑥𝑀) = 𝐸Ψ(𝑥𝑖 , . . . , 𝑥𝑁 , 𝑥𝐴 , . . . , 𝑥𝑀)
(2.3)

At this point, we may introduce our first approximation. Nuclei
have a mass much larger than the mass of the electron1. As such,
we may regard the second term of the Hamiltonian as negligible.
This is called the Born-Oppenheimer approximation, in which
the electrons, being much lighter than the nuclei, are assumed to
adjust instantaneously to the nuclear positions. This assumption
enables the decoupling of the electronic and nuclear Schrödinger
equations. The electronic wavefunction is then solved within the
fixed nuclear framework, which originates the external potential.
Furthermore, by assuming that the positions of the nuclei do not
change, the last term of the Hamiltonian (2.2) becomes a constant
and might be disregarded as well (a constant added to an operator
will have no practical effect other than to add a shift to all energy
values). Under this approximation, the Schrödinger equation takes
the form

�̂�Ψ(𝑥𝑖 , . . . , 𝑥𝑁 ) = 𝐸Ψ(𝑥𝑖 , . . . , 𝑥𝑁 ) (2.4)
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with the Hamiltonian

𝐻 = −
∑
𝑖=1

1
2
∇2
𝑖 −

∑
𝑖

∑
𝐴

𝑍𝐴

𝑟𝑖 ,𝐴
+
∑
𝑖

∑
𝑗>𝑖

1
𝑟𝑖 , 𝑗

(2.5)

and the nuclear positions are simply parameters of the equa-
tions.





3 The Hartree-Fock method

The primary objective of the Hartree-Fock method is to solve
the electronic Schrödinger equation to understand the electronic
behavior of a system and determine its ground-state wavefunction
and energy. This is achieved by expressing the Hamiltonian as a
sum of single-particle operators known as the Fock Hamiltonian
𝐻𝐹 :

𝐻 =
∑
𝑖

𝐻𝐹(𝑥𝑖) (3.1)

In equation (2.5), the first and second terms are already in the
form of single-particle operators. However, the last term involves
interactions between all electrons and is more challenging to handle.
To address this, instead of computing individual electron-electron
repulsion terms, we introduce an effective potential, denoted as
𝑉𝐻𝐹 or the Hartree-Fock potential, which takes into account the
repulsion experienced by the electron 𝑖 due to the presence of all
the other electrons:

𝐻𝐹 = −1
2
∇2
𝑖 −

∑
𝐴

𝑍𝐴

𝑟𝑖 ,𝐴
+𝑉𝐻𝐹

𝑖 (3.2)

By employing the Fock operator, we can decompose the unsolvable
many-body electronic Schrödinger equation into a set of solvable
one-electron equations.
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𝐻𝐹𝜒𝑖 = 𝜖𝑖𝜒𝑖 (3.3)

Here, 𝜒𝑖 represents single-particle wavefunctions, also known
as spin-orbitals or atomic orbitals, which depend on the three
spatial components and a spin component. Further discussion on
the Hartree-Fock potential will be provided later. The motivation
behind this decomposition is to express the overall wavefunction
Ψ as a product of individual single-particle wavefunctions:

Ψ(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) = 𝜒1(𝑥1)𝜒2(𝑥2) · · · 𝜒𝑁 (𝑥𝑁 ) (3.4)

Although this form is convenient, it fails to satisfy the antisymmetry
principle, which is a fundamental requirement for describing
fermions. According to this principle, the wavefunction of fermions
should exhibit antisymmetry upon interchanging any set of space-
spin coordinates. In the context of electrons, the coordinates 𝑥𝑖
represent the configuration space, encompassing the three spatial
coordinates and the spin. The spin of an electron can assume two
distinct eigenvalues: -1/2 and +1/2, corresponding to the alignment
of the spin relative to an arbitrary axis. These two spin types are
commonly denoted as 𝛼 (+1/2) and 𝛽 (-1/2) spins, respectively.
Furthermore, they are orthonormalized, which means their inner
product is zero when the spins are different and equal to one when
they are the same. The typical form of a spin-orbital is a product
involving a spatial orbital, denoted as 𝜙(𝑟𝑖), and the spin function
denoted as 𝜎. This can be expressed as:

𝜒(𝑥𝑖) = 𝜙(𝑟𝑖)𝜎 (3.5)

where 𝑟𝑖 denotes the spatial coordinates. In order to comply with
the antisymmetry principle, we need that

Ψ(𝑥1 , . . . , 𝑥𝑖 , 𝑥 𝑗 , . . . , 𝑥𝑁 ) = −Ψ(𝑥1 , . . . , 𝑥 𝑗 , 𝑥𝑖 , . . . , 𝑥𝑁 (3.6)

To fulfill these requirements, we can employ specific linear com-
binations of Hartree products. It is important to note that if a
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wavefunction is valid, its linear combinations are also valid. Let
us consider a two-electron system as an example. If electron one
occupies the 𝜒𝑖 spin-orbital and electron two occupies the 𝜒𝑗
spin-orbital, we have:

Ψ(𝑥1 , 𝑥2) = 𝜒𝑖(𝑥1)𝜒𝑗(𝑥2) (3.7)

and, on changing the electrons

Ψ(𝑥2 , 𝑥1) = 𝜒𝑖(𝑥2)𝜒𝑗(𝑥1) (3.8)

To meet the antisymmetry requirement, we can construct a linear
combination of these trial wavefunctions:

Ψ(𝑥1 , 𝑥2) =
1√
2

[
𝜒𝑖(𝑥1)𝜒𝑗(𝑥2) − 𝜒𝑖(𝑥2)𝜒𝑗(𝑥1)

]
(3.9)

where the coefficient 1√
2

serves as a normalization factor. It is
worth noting that exchanging the electrons results in a sign change
of the wavefunction. This combination can be represented as a
determinant:

Ψ(𝑥1 , 𝑥2) =
1√
2

�����𝜒1(𝑥1) 𝜒2(𝑥1)
𝜒1(𝑥2) 𝜒2(𝑥2)

����� (3.10)

Generalizing to 𝑁 electrons we arrive at what is called the Slater
determinant

Ψ(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) =
1√
𝑁 !

����������
𝜒1(𝑥1) 𝜒2(𝑥1) · · · 𝜒𝑁 (𝑥1)
𝜒1(𝑥2) 𝜒2(𝑥2) · · · 𝜒𝑁 (𝑥2)
...

...
. . .

...

𝜒1(𝑥𝑁 ) 𝜒2(𝑥𝑁 ) · · · 𝜒𝑁 (𝑥𝑁 )

����������,
(3.11)
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Slater determinants offer a convenient approach for constructing
wavefunctions using single-particle orbitals. This is due to a key
property of determinants: the interchanging of two rows in the
determinant matrix leads to a sign change. In this context, each
row corresponds to an electron, and each column represents a
spin-orbital.

The Hartree product represents a wavefunction where the electrons
are completely uncorrelated, while the anti-symmetrized Slater
determinant introduces a type of correlation among the electrons.
This quantum mechanical phenomenon, called the "exchange"
interaction, arises from the process of antisymmetrization and will
contribute to the total energy of the system. Another important
aspect of expressing electrons in orbitals using Slater determinants
arises when we attempt to place two electrons in the same orbital
simultaneously (i.e. 𝜒1 = 𝜒2). In such a case, two columns of the
determinant matrix become identical. A fundamental property of
determinants is that when this occurs, the determinant becomes
zero, resulting in Ψ(𝑥1 , 𝑥2) = 0. This phenomenon corresponds to
the Pauli exclusion principle.

The Hartree-Fock method makes an assumption that the behavior of
electrons can be described by a Slater determinant. This assumption
implies that each electron moves independently of all others,
except for the Coulomb repulsion it experiences due to the average
positions of all electrons. In the Hamiltonian, the Coulombic
repulsion is incorporated through the Hartree potential, which
consists of two components:

𝑉𝐻𝐹(𝑥1) =
𝑁∑
𝑗

(
𝐽𝑗(𝑥1) − �̂� 𝑗(𝑥1)

)
(3.12)

The first component, denoted as 𝐽, is known as the Coulomb
operator. It can be expressed as follows:

𝐽𝑗(𝑥1) =
∫ ��𝜒𝑗(𝑥2)

��2 1
𝑟12

d𝑥2 (3.13)

This term represents the average local potential at position 𝑥1,
resulting from the charge distribution of the electron in the orbital
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1: The Coulomb term also acts on a
spin-orbital, but we can omit 𝜒𝑖 in
the operator expression because we
do not integrate over its coordinates.

𝜒𝑗 . It is important to note that we sum over all the other orbitals.
Sometimes, this first term is referred to as single-electron integrals.
The second component of𝑉𝐻𝐹 accounts for the exchange contribu-
tion and is purely a quantum mechanical effect. It can be defined
in terms of its action on a spin-orbital 1. Mathematically, it is given
by:

�̂� 𝑗(𝑥1)𝜒𝑖(𝑥1) =
∫

𝜒∗
𝑗(𝑥2)

1
𝑟12

𝜒𝑖(𝑥2)d𝑥2𝜒𝑗(𝑥1) (3.14)

The exchange operator, also referred to as bi-electronic integrals,
accounts for the correlation between electrons due to their in-
distinguishability and the quantum mechanical requirement of
antisymmetry for the total wave function of a many-electron system.
It describes the effect of swapping the positions of two electrons
and measures the change in the electronic energy resulting from
this swap.

In summary, the Hartree-Fock method assumes the independence
of electron motion while incorporating the Coulomb repulsion
through the Hartree potential, which consists of the Coulomb op-
erator 𝐽 and the exchange term �̂�. The Coulomb operator describes
the average local potential resulting from the charge distribution
of electrons, while the exchange term accounts for the quantum
mechanical effect of electron exchange, reflecting the indistin-
guishability of electrons and the requirement of antisymmetry in
the wave function.

So, as we see, the Hartee-Fock potential is dependent on the spin-
orbital which, in turn, needs 𝑉𝐻𝐹 to be calculated. This is solved
iteratively by an initial guess for the potential, from which we
calculate the spin-orbitals and obtain a new Hartree-Fock potential.
This is repeated until convergence. This approach is called a Self-
Consistent Field calculation and it is also used in Density Functional
Theory.

One-electron Hamiltonian

The one-electron Hamiltonian
is an operator that gathers only
the operations related to a single
electron in the Fock Hamiltonian

ℎ̂ = −1
2
∇2
𝑖
−
∑
𝐴

𝑍𝐴
𝑟𝑖 ,𝐴

We can express the Fock Hamiltonian in equation (3.2) in an
alternative form, using a one-electron Hamiltonian denoted as ℎ̂
and incorporating the Hartree-Fock potential, which comprises
the Coulomb and exchange operators. The resulting expression
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is [
ℎ̂(𝑥1) +

∑
𝑗≠𝑖

𝐽𝑗(𝑥1) − �̂� 𝑗(𝑥1)
]
𝜒𝑖(𝑥1) = 𝜖𝑖𝜒𝑖(𝑥1) (3.15)

It is worth noting that upon realizing that[
𝐽𝑖(𝑥1) − �̂�𝑖(𝑥1)

]
𝜒𝑖(𝑥1) = 0 (3.16)

we can simplify the expression further to obtain

[
ℎ̂(𝑥1) +

∑
𝑗

𝐽𝑗(𝑥1) − �̂� 𝑗(𝑥1)
]
𝜒𝑖(𝑥1) = 𝜖𝑖𝜒𝑖(𝑥1) (3.17)

This form is commonly used to represent the Hartree-Fock equa-
tions.

The Variational Method

The variational method is an ap-
proach used to approximate the
ground state wavefunction of
a quantum mechanical system.
It involves constructing a trial
wavefunction that depends on a
set of parameters, and then min-
imizing the energy of the system
with respect to these parameters.
The principle behind the vari-
ational method states that the
energy of the trial wavefunction
will always be greater than or
equal to the true ground state en-
ergy. By optimizing the param-
eters, typically the spin-orbitals,
the variational method allows
us to approximate the ground
state wavefunction within the
constraints of the Hartree-Fock
approximation.

To approximate the ground-state wavefunction, we solve
these equations using the variational method. By finding the en-
ergy at which the minimized eigenvalue corresponds to the ground
state, we obtain the ground-state Hartree-Fock wavefunction. The
energy is obtained by calculating the expectation value of the
Hamiltonian.

In conclusion, it is important to acknowledge the various ap-
proximations made in the Hartree-Fock method. First, the Born-
Oppenheimer approximation is employed, assuming negligible
nuclear motion compared to electrons due to the vast mass dif-
ference. Second, we have not addressed relativistic effects, which
become more significant for heavier atoms but are generally less
relevant for lighter elements like fluorine. Third, we assume the
availability of a complete representation of spin-orbitals, although
in practice, these functions are often expressed as finite linear com-
binations of basis functions (more details on this will be discussed
later on Chapter 5).

Fourth, the restriction to wavefunctions generated by a Slater
determinant should be noted. In the original quantum mechanical
problem, the goal is to find the wavefunction that describes the
system’s ground state, possessing the minimum energy among
all possible wavefunctions. In the Hartree-Fock theory, however,
we seek the wavefunction of minimum energy within the subset
that can be described by a Slater determinant. Consequently, the
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Hartree-Fock ground-state wavefunction will not be identical to
the true ground-state wavefunction.

Fifth, an important approximation is the omission of the Coulomb
correlation. The energy contribution of the Coulomb correlation,
often referred to as "electronic correlation", is sometimes defined
to be the difference between the actual total energy and the en-
ergy of the Hartree-Fock solution. This effect, which arises from
the collective influence of all electrons on the motion of a single
electron, contributes only about 1% to the total energy, but plays
a crucial role in capturing phenomena like London dispersion,
which hold particular significance in molecular crystals. Neverthe-
less, there are several methods that build upon the Hartree-Fock
solution to account for the electronic correlation. These methods
are collectively called post-Hartree-Fock methods and include
Quantum Monte Carlo, Configuration Interaction, Møller–Plesset
perturbation theory, among others.





4 Density Functional Theory

The wavefunction

Ψ(x1 , · · · , x𝑁 ) : ℝ3𝑁 ↦→ ℂ

where x𝑖 is the three-component
spatial position of electron 𝑖, and
𝑁 is the number of electrons in
the system.

Density Functional Theory (DFT) is a powerful theoretical frame-
work in quantum mechanics used to study the electronic structure
of many-body systems. It has become a popular method in various
fields of physics, chemistry, and materials science, as it allows for
accurate and efficient calculations of the electronic properties of
molecules, solids, and nanostructures.

General quantum mechanics presents a direct map between the
wavefunction and the energy of a system. The properties, given
as derivatives of the energy, are, therefore, also mapped from
the wavefunction. In fact, the wavefunction can be thought of as
this mathematical object that contains everything that there is to
know about the system (although its physical interpretation is still
debatable). The wavefunction Ψ is a complex-valued function over
all the possible positions of the electrons in the system ℝ3𝑁 , where
𝑁 is the number of electrons in the system, and the 3 comes from
the three spatial coordinates. So, the wavefunction takes the 3𝑁
spatial position variables and maps them to a unique complex
number.

The electron density

𝜌(r) : ℝ3 ↦→ ℝ

where r is the coordinates of a
point in space.

The fundamental concept in DFT is the electron density, which is a
key quantity that characterizes the electronic structure of a system.
The electron density is a function of only three spatial coordinates
that maps to a real number. Unlike traditional wavefunction-based
methods, such as Hartree-Fock theory, DFT does not explicitly
compute the many-electron wavefunction, but instead focuses on
the electron density as the fundamental variable. The central idea
is that the ground-state energy of a system can be determined
solely by the electron density, bypassing the need to calculate the
full many-electron wavefunction. In a way, it tries to find the same
answer by asking a different question. The equivalence between
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solving the many-body problem to the electron density is assured
by the Hohenberg-Kohn theorems, explained below. This was a
huge discovery that opened the gates for the quantum description
of systems much larger than the ones that could be described by
other methods.

4.1 The First Hohenberg-Kohn Theorem

The first Hohenberg-Kohn theorem establishes a one-to-one cor-
respondence between the external potential of a many-electron
system and its ground-state electron density. Formally, the theorem
states:

Theorem 4.1.1 (First Hohenberg-Kohn Theorem) For a given
external potential𝑉𝑒𝑥𝑡(r) that confines the electrons in a many-electron
system, there exists a unique ground-state electron density 𝜌(r) that
minimizes the total energy of the system.

The external potential represents the influence of external forces or
fields acting on the electrons in a many-electron system. It arises
from the interaction of the electrons with their surroundings, such
as, but not limited to, an external electric field generated by the
atoms’ nuclei in a molecule, or crystal lattice in a solid. It affects
the behavior and arrangement of electrons within the system,
influencing their energy levels and spatial distribution.

In practical terms, the external potential can be described as a
scalar function of position 𝑉𝑒𝑥𝑡(r), where r represents the spatial
coordinates. This potential accounts for the average interaction
of the electrons with the external environment and is typically
treated as an input parameter in DFT calculations. The electrons
in the system respond to the external potential by rearranging
themselves to attain a state of minimum energy.

If we think of the electron density as a property of the system, it is
not surprising that there’s a map between each possible external
potential to a wavefunction. And from each possible wavefunction
to an electron density. The other way around, however counter-
intuitive, is also true. The first Hohenberg-Kohn (HK) theorem,
first formulated by P. Hohenberg and W. Kohn in 1964, states that
a ground-state electron density is uniquely mapped to a single
wavefunction and a uniquely defined external potential (and the



4.2 The Second Hohenberg-Kohn Theorem 23

ground-state energy of the system) [38]. Since there is a one-to-one
correspondence 𝑉𝑒𝑥𝑡 ↔ Ψ ↔ 𝜌, we can construct a direct map
between 𝑉𝑒𝑥𝑡 and𝜌. Compared to the wavefunction, the electron
density is a much simpler mathematical object that maps only
three spatial variables (a point in space) to a real number. The
beauty of this approach is that despite being much simpler, the
electron density contains all the information needed to describe
the ground-state properties of a many-electron system, just like
the wavefunction.

This direct mapping between the wavefunction and the electron
density also allows for the expression of any property, traditionally
described as an expectation value

〈
Ψ|�̂� |Ψ

〉
involving operators

and the many-body wavefunction, as a functional of the electron
density 𝑂 [𝜌(r)]. In DFT, each observable property corresponds to
a functional that, given the ground-state electron density as input,
provides the value of that property as an output.

4.2 The Second Hohenberg-Kohn Theorem

Not the first use of the electron
density!

Since the early 1920s, the
Thomas-Fermi theory has been
used as an approximation to cal-
culate electronic energy based
on electron density distribu-
tions. However, its application
in chemistry and materials sci-
ence was limited due to its inabil-
ity to accurately predict chem-
ical bonding. Nonetheless, the
theory considered interactions
between electrons in an exter-
nal potential and established
an implicit relationship between
this potential and the electron
density. Although the theory
provided a rough solution to
the many-electron Schrödinger
equation, it remained unclear
whether there was a direct
connection between the the-
ory and whether knowledge of
the ground-state density alone
could uniquely determine the
system. This mystery was fi-
nally resolved by Hohenberg
and Kohn. Their proof is re-
markably simple, almost trivial,
which raises the question of why
it took approximately 40 years
from the time Thomas and Fermi
first utilized density as a funda-
mental variable before their ap-
proach was firmly grounded in
physics. [39].

The second Hohenberg-Kohn theorem takes us a step closer to a
more practical approach to Density Functional Theory. It reveals a
significant aspect of the functional that yields the total energy. The
theorem states:

Theorem 4.2.1 (Second Hohenberg-Kohn Theorem) The unique
functional that returns the ground-state total energy when applied to
the ground-state density, returns a higher value for any other density.

This theorem implies a systematic procedure for determining the
ground-state density by minimizing the total energy functional.
Consequently, given an external potential𝑉ext, such as a crystalline
atomic arrangement, the ground-state energy𝐸0[𝑉ext] is minimized
by the true ground-state electron density 𝜌(𝑟) of the system. The
true ground-state energy is, then, a functional of the electron
density, written as

𝐸0 = 𝐸0[𝑉ext] = min
𝜌(𝑟)

𝐸0[𝜌(𝑟)] (4.1)

where the minimization is taken over all possible electron densities
𝜌 that are normalized to the total number of electrons:
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∫
𝜌(r)𝑑r = 𝑁, (4.2)

This allows us to calculate the ground-state energy by minimizing
the total energy functional with respect to the electron density.

One may question, as I did, the necessity of a formalism for
the second theorem, as it appears to be a consequence of the first
theorem. The first theorem ensures that for any electron density that
is given as input to the energy functional, we obtain a unique value
for the energy. Furthermore, it guarantees that only the specific
ground-state electron density yields that particular value for the
ground-state energy. However, it does not provide information on
how the functional values vary with different densities. By itself,
the first theorem allows the possibility that another electron density,
not the ground-state density, could generate a functional value
lower than that produced by the ground-state density. The second
theorem reassures us that the minimum value of the functional
is obtained only when the ground-state density is used, thereby
making the energy obtained by the minimization of the functional
the ground-state energy of the system. Consequently, the second
Hohenberg-Kohn theorem indicates that once the minimum of the
energy functional is found, the ground-state electron density has
been determined.

4.3 The Kohn-Sham Equations

Although the HK theorems provide a theoretical foundation for
DFT, it does not provide a practical way to compute the electron
density 𝜌(𝑟) for a given system. To make DFT practical, the Kohn-
Sham (KS) equations were introduced by W. Kohn and L. J. Sham
in 1965 [40]. The KS equations are a set of equations that translates
the original many-electron problem onto a electron density formed
by a system of non-interacting electrons moving in an effective
potential. The KS equations consist of two parts: the first part
involves solving for a set of one-electron wavefunctions, called the
KS orbitals, that reproduce the electron density of the system, and
the second part involves solving for the effective potential that is
consistent with the KS orbitals.
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1: The Born-Oppenheimer approxi-
mation has been made.

The KS orbitals are obtained by solving the following set of eigen-
value equations:

�̂�KS𝜓𝑖(r) = 𝜖𝑖𝜓𝑖(r) (4.3)

where 𝜓𝑖(r) represents the 𝑖th KS orbital, 𝜖𝑖 represents the corre-
sponding KS energy, and �̂�KS is called the Kohn-Sham Hamiltonian.
And from the KS orbitals, the electron density is given by:

𝜌(r) =
𝑁∑
𝑖=1

|𝜓𝑖(r)|2 (4.4)

The missing element is the Kohn-Sham Hamiltonian, which in
atomic units is given by 1:

𝐻𝐾𝑆 = 𝑇 +𝑉Hartree +𝑉ext +𝑉XC (4.5)

= ∇2 +
∫

𝜌(r′)
|r − r′ |dr′ +

𝑁∑
𝐼=1

𝑍𝐼

|r − R𝐼 |
+

𝜕𝐸XC [𝜌]
𝜕𝜌

(4.6)

Don’t get confused with terms!

The set of KS orbitals 𝜓𝑖 is often
called the "wavefunction" in the
context of DFT computing codes.
This is not the wavefunction Ψ

that we get from the Schrödinger
equation and may be viewed
here simply as a mathematical
tool that bear no physical mean-
ing. KS orbitals only represent a
noninteracting reference system
which has the same electron den-
sity as the real interacting sys-
tem. That being said, there are
cases where the KS orbitals re-
semble the Hartree-Fock orbitals
(which do have physical mean-
ing) and might be a good basis
for qualitative interpretation of
molecular orbitals [41].

where the first term is the kinetic energy, the second term also
called the Hartree potential, represents the classical Coulomb
interaction with the electron density, the third term represents the
external potential originating from the 𝑁 nuclei, and the fourth
term represents the exchange-correlation (XC) potential. The first,
second and third terms represent contributions of a single particle
to the energy, and many-body and correlation contributions in
both the kinetic energy and Hartree energy are included in the
exchange-correlation energy. This way, this formalism presents an
exact translation of the Born-Oppenheimer many-body problem
to the electron density problem.

The XC functional 𝐸XC is the most important and challenging part
of DFT, as it accounts for the many-body effects of electron-electron
interactions. The exact form of 𝐸xc[𝜌(r)] is unknown and must be
approximated in practical DFT calculations.
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4.4 Self-Consistent Field calculations

At this point, one may have noticed that the Hamiltonian depends
on the electron density, which in turn is obtained from the KS
orbitals calculated using this same Hamiltonian. This interdepen-
dence is solved in a self-consistent manner, in what is called a Self
Consistent Field (SCF) calculation. The general recipe for this is
presented in Figure 4.1 and works as follows:

1. Choose an initial guess for the electron density (often taken
as the density of a related system or a superposition of atomic
densities).

2. Use the chosen density to construct the Kohn-Sham Hamil-
tonian.

3. Solve the Kohn-Sham equations, which are a set of eigen-
value equations for a set of single-particle orbitals. These
equations incorporate the exchange-correlation potential,
which describes the interactions between the electrons.

4. The solutions of the Kohn-Sham equations give a set of

Forces on atoms, properties, ...

Initial guess

Yes

No

Construct the Kohn-Sham Hamiltonian

Solve the KS equations

Calculate the electron density
and ground state energy New density based on 

previous one

Converged?

Ground state electron density and energy

Figure 4.1: Diagram presenting the Self Consistent Field calculation in Density Functional Theory.
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eigenvalues and eigenfunctions. These eigenvalues represent
the energy levels of the electrons, and the eigenfunctions are
the wavefunctions of the electrons in the system.

5. Use the eigenfunctions to calculate a new electron density.
6. Compare the new electron density with the previous guess.

If they are not the same within a chosen tolerance, update the
guess by mixing the previous guess and the new density. The
mixing parameter is typically chosen to be small to ensure
convergence.

7. Repeat steps 2-6 until the electron density converges to a
self-consistent solution.

Convergence is typically determined by a threshold for the change
in the density between iterations (a change in energy and forces
between iterations). Once the self-consistent electron density has
been obtained, various properties of the system can be calculated,
such as the total energy, electron density distribution, forces on
atoms, and the electronic structure. The practical implementation
of DFT requires the discretization of the Kohn-Sham equations
on a grid or in a basis set, depending on the chosen numerical
approach. The choice of grid or basis set, as well as the convergence
criteria for self-consistency, can affect the accuracy and efficiency
of DFT calculations.

This KS approach has become the most widely used method in DFT
and has enabled calculations of electronic properties of systems
ranging from atoms and molecules to solids and surfaces.

4.5 The Exchange-Correlation Functional

The XC functional 𝐸xc[𝜌(r)] in Equation 4.6 is the most important
and challenging part of DFT, as it accounts for the many-body
effects of electron-electron interactions. However, the exact form of
𝐸xc[𝜌(r)] is unknown and must be approximated in practical DFT
calculations.

There are various approximations that are commonly used in
DFT to approximate the XC functional. The most widely used
approximation is the Local Density Approximation (LDA), which
assumes that the XC energy per electron at a given point in space
depends only on the electron density at that point, and is the
same as that of a homogeneous electron gas with the same density



28 4 Density Functional Theory

[40, 42]. The LDA has been found to be reasonably accurate for
many systems, especially for systems with slowly varying electron
densities.

Another commonly used approximation is the Generalized Gradi-
ent Approximation (GGA), which takes into account not only the
electron density at a point, but also the gradient of the electron
density, to approximate the XC energy per electron [43]. The GGA
provides a more accurate description of the XC effects compared
to LDA, and it has been widely used in many DFT calculations.

In addition to LDA and GGA, there are many other more so-
phisticated approximations, such as meta-GGA functionals that
incorporate higher-order derivatives of the electron density, and
hybrid functionals that combine LDA or GGA with a fraction of
Hartree-Fock exchange. These advanced functionals can provide
improved accuracy for specific types of systems or properties, but
they also come with increased computational costs. It’s important
to note that the choice of XC functional can have a significant
impact on the results of DFT calculations, and the accuracy of the
results depends on the appropriateness of the chosen XC func-
tional for the specific system under study. Therefore, it is crucial to
carefully select an appropriate XC functional for a given problem,
and to validate the results against experimental or higher-level
theoretical data whenever possible. If the main goal of the simu-
lation is structural properties, one can, for example, compare the
lattice parameters of a crystalline structure optimized with the XC
functional with lattice parameters determined using experimental
techniques, such as X-ray diffraction or neutron powder diffraction.
On the other hand, if the focus of the simulation is on energy levels
and band gaps, one could compare such calculated properties with
ionization potentials determined experimentally.

Among the hybrid XC functional is PBE0. Being a hybrid functional,
it combines some fraction of the exact exchange calculated using
Hartree-Fock with the semi-local exchange-correlation functional
PBE. The PBE0 functional was proposed by Perdew, Burke, and
Ernzerhof, and is a modification of the PBE functional, which
belongs to the GGA class [43–45]. PBE0 uses a fraction of the exact
exchange to improve the description of the exchange interaction,
while still using the semi-local PBE functional for the correlation
interaction. The fraction of exact exchange is controlled by a mixing
parameter, 𝛼, which ranges from 0 to 1. When 𝛼 = 0, PBE0 reduces
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to the standard PBE functional, while when 𝛼 = 1, PBE0 becomes
the pure exchange functional. The most common value for 𝛼 is
0.25, which is the value used in this work.

Density functional theory exchange-correlation functionals encom-
pass both the exchange and correlation effects within the electron
density. However, the treatment of the Coulomb correlation, which
is the classical electrostatic interaction between electrons, is not
explicitly included in standard DFT functionals.

4.6 Grimme’s D3 dispersion correction

While the Hartree-Fock approach completely neglects the Coulomb
correlation, DFT presents an improvement. The exchange-correlation
functional combines the exchange and correlation contributions
into a single term that accounts for the effects of electron-electron
interactions. The exchange part of the functional captures the
quantum mechanical exchange interaction, which arises due to the
antisymmetry of the electron wavefunction. And the correlation
part accounts for the electron-electron correlation effects, which
are associated with the repulsion between electrons.

While DFT functionals incorporate correlation effects to some
extent, they typically do not explicitly include the long-range
Coulomb correlation. This limitation arises from the approximation
used in standard DFT functionals, which is typically based on the
local density approximation (LDA) or the generalized gradient
approximation (GGA). These approximations focus primarily on
the local electron density and do not fully capture the long-range
behavior of the Coulomb interaction.

The Grimme’s D3 method [46] is a widely used dispersion correc-
tion scheme employed in density functional theory (DFT) calcula-
tions to account for long-range van der Waals (vdW) interactions.
This method extends the previous D2 [47] method by incorporating
three-body terms, which account for the non-additivity of the vdW
interactions among three atoms. The D3 method adds a correction
term to the total energy of the system, which is expressed as:

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐷𝐹𝑇 + 𝐸𝑑𝑖𝑠𝑝 (4.7)
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Here, 𝐸𝐷𝐹𝑇 represents the DFT energy calculated using a standard
DFT functional, and 𝐸𝑑𝑖𝑠𝑝 is the dispersion energy correction. The
dispersion energy is calculated by

𝐸𝑑𝑖𝑠𝑝 = − 1
2
∑
𝑖

∑
𝑗

[
𝑠6
𝐶
𝑖 𝑗

6

𝑟6
𝑖 𝑗

𝑓 𝑑6 (𝑟𝑖 𝑗) + 𝑠8
𝐶
𝑖 𝑗

8

𝑟8
𝑖 𝑗

𝑓 𝑑8 (𝑟𝑖 𝑗)
]

(4.8)

− 1
6
∑
𝑖

∑
𝑗

∑
𝑘

𝐶
𝑖 𝑗𝑘

9

𝑟9
𝑖 𝑗𝑘

𝑓 𝑑9 (𝑟𝑖 𝑗𝑘 , �𝑖 𝑗𝑘)

where 𝑓 𝑑𝑛 (𝑟𝑖 𝑗) is the damping function that depends on the inter-
atomic separation 𝑟𝑖 𝑗 , and 𝐶 𝑖 𝑗(𝑘)𝑛 are the dispersion coefficients for
the atom pairs and trios. The damping functions assure a smooth
transition between the semilocal correlation computed by the XC
functional and the long- and midrange correlation calculated by
the D3 method. 𝑠𝑛 are functional-dependent scaling factors (for
PBE0, 𝑠6 = 1.0 and 𝑠8 = 1.2177. The dispersion coefficients are esti-
mated from first principles by TD-DFT (Time-dependent density-
functional theory) computation of the dynamical polarizability
for model hydrides of all elements and using the Casimir-Polder
integration. [47].

In a crystal lattice, the infinite sum is evaluated in direct space near
the atom and in reciprocal space beyond a threshold radius, which
makes the series convergent. This approach approximates the very
computationally demanding estimation of many-body long-range
electronic effects to a simple sum of terms, which can be almost
instantaneously computed in almost any computer. However, we
do have to pay a price for this great gain in computational times.
These methods need some predetermined input parameters to
calculate the van der Waals interaction. Besides that, the complex
many-body interactions are treated outside the DFT framework
and therefore the ground state wavefunction and ground state
density do not contain non-local correlation effects. For fluorine, the
dispersion constants are 𝐶6 = 7.2, 𝐶8 = 122.8, and 𝐶9 = 2574.3
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In the field of ab initio calculations, a fundamental aspect of making
Hartree-Fock or Density Functional Theory calculations applicable
is the choice of basis sets. They are used to represent the electronic
wavefunctions in a form suitable for computers.

A basis set is a collection of functions used to approximate the
wavefunctions of electrons in a system. These functions serve as
building blocks for expanding the electronic density. In DFT, they
are used in the expasion of the Kohn-Sham wavefunctions, while
in Hartree-Fock they are used to expand the spin-orbitals.

5.1 Types of Basis Sets

There are two main types of basis sets commonly employed: plane
wave basis sets, and localized or atom-centered basis sets. Each
type has its own advantages and limitations, making them suitable
for different types of systems and calculations.

Plane wave basis sets are commonly used for periodic systems,
such as crystals, due to their ability to accurately represent ex-
tended electronic states. These basis sets utilize periodic boundary
conditions and employ plane waves as the basis functions. The use
of plane waves requires the inclusion of a sufficiently large number
of wavevectors to accurately describe the electronic structure.

Localized basis sets are often employed for molecular systems,
where the electronic states are more localized around the atomic

This explanation is guided by the lecture notes for the European Summer School
“Ab initio modeling in solid-state chemistry”, Torino, September 2000, by Mike
Towler
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nuclei. These basis sets consist of localized functions centered on
each atom, such as Slater-type orbitals (STOs), Gaussian-type or-
bitals (GTOs) or numerical atomic orbitals (NAOs). Localized basis
sets allow for a more efficient representation of the wavefunctions,
particularly in systems with localized electronic density.

This work uses an atom-centered basis set. Even though we are
dealing with a crystalline solid, the phases of fluorine studied
here are composed of aggregated fluorine molecules. This could
somewhat justify this choice, but the truth is that our preliminary
studies using a hybrid exchange-correlation functional and Quan-
tum Espresso, which uses a plane wave basis set, have shown to
be extremely inefficient and have very slow convergence. This was
one of our motivations to use CRYSTAL17, which demonstrated a
more efficient algorithm for PBE0 at the time.

5.2 Gaussian basis sets

Slater-type orbitals have the exponential dependence 𝑒−�𝑟 and
are very close in their mathematical expression to the real atomic
orbitals:

𝜑𝑆𝑇𝑂 = 𝑁𝑟𝑛−1𝑒−�𝑟𝑌𝑙𝑚(Θ,Φ) (5.1)

Here, 𝑁 is a normalization factor. The exponent � controls the
spatial extent of the orbital. The coordinates 𝑟, Θ, andΦ correspond
to the spherical coordinates. The angular part of the wavefunction
is described by the function 𝑌𝑙𝑚 , which determines the orbital’s
shape. In this equation, the classical quantum numbers principal,
angular momentum, and magnetic are denoted by 𝑛, 𝑙, and 𝑚,
respectively.

When it comes to approximating the wavefunction, although STOs
provide better representation near the atomic nuclei, Gaussian-
type functions (GTFs), are more commonly used. This preference
arises from the fact that GTFs allow for faster computational
implementations. Gaussian-type functions have the exponential
dependence 𝑒−𝛼𝑟2 :

𝜑𝐺𝑇𝐹 = 𝑁𝑌𝑙𝑚(Θ,Φ)𝑟 𝑙𝑒−𝛼𝑟
2

(5.2)
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When performing calculations in quantum chemistry, particularly
for many-electron systems, one often needs to evaluate many
multidimensional integrals. These integrals can be computed more
efficiently and more quickly if Gaussian functions are used, rather
than Slater functions.

A key factor is that the product of two Gaussian functions is another
(scaled and shifted) Gaussian function, which greatly simplifies the
calculation of integrals. With Slater functions, the product is not a
Slater function, which makes the integrals more complicated and
computationally intensive. These GTFs will be further grouped to
form a Gaussian-type Orbital (GTO) in what is called a contraction
scheme. For further details on this, please refer to Appendix A.

Don’t get confused with terms!

In many contexts in the field of
computational quantum chem-
istry the terms "Gaussian-
type functions" (GTFs) and
"Gaussian-type orbitals" (GTOs)
are used interchangeably. In this
text, however, GTOs are used
to refer to the functions built
from a group of GTFs, which in
other places might be called "con-
tracted Gaussian-type orbitals"
(cGTOs). Gaussian-type func-
tions, in turn, might be called
Gaussian primitives.

To expand the wavefunctions (the 𝜓𝑖 in DFT and 𝜒𝑖 in HF), we
express them as linear combinations of predetermined functions

𝜓𝑖 =
∑
�

𝑐𝑖 ,�𝜑� (5.3)

Notice that once we have chosen our basis set {𝜑}, the variational
problem both in DFT and HF in essence involves varying the
coefficients 𝑐 that minimizes the expectation value for the energy.
In theory, this expansion is exact, but in practice, one must choose
a finite number of functions for the basis, which introduces some
error, called the finite basis set error.

5.3 Gaussian basis sets in periodic systems

For periodic systems, the basis functions are actually Bloch wave
functions (BFs), denoted as 𝜙�, constructed from these GTOs. These
BFs incorporate a phase factor that depends on the wave vector k,
which determines the frequency and direction of oscillation

𝜙�(r; k) = 1√
𝑁

∑
t

𝜑t
�(r − r𝑎 − t)𝑒 𝑖k·t (5.4)

where 𝜑t
� represents the basis function 𝜑�, which is localized at the

position r𝑎 in the original unit cell and translated into neighboring
cells. The sum over t includes lattice translation vectors, allowing
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the basis function to extend over the entire crystal lattice. In the
periodic system context, equation (5.3) is rewritten as

𝜓𝑖k =
∑
�

𝑐𝑖 ,�,k𝜙�k(r) (5.5)

and 𝜓𝑖k may be called a crystalline orbital. It is important to note
that the basis set of Bloch functions theoretically extends infinitely
due to the continuous nature of the wave vector k. However, in
practical calculations, the problem is solved using a finite set of
k points (defined by "shrinking" factors in most codes). This set
of wave vectors is chosen in order to have the property that no
two of them are equivalent, but every possible k vector has its
equivalent in the chosen set. This set is called the first Brillouin
zone. Therefore, by restricting the calculations to vectors in the
first Brillouin zone, we are representing the entire infinite lattice
without repetition.

A note should be made that, from the perspective of a user of
a computational chemistry code, there’s no difference between
the input of basis functions for isolated molecules and crystalline
systems, as the construction of the Bloch waves basis set is per-
formed internally. Usually, the user will only have to provide a
set of parameters (that might be taken from the literature in most
cases) that define these basis functions.

5.4 Basis sets nomenclature

When discussing Gaussian basis sets, it is common in the liter-
ature to use certain terms that somewhat reflect the historical
development of these bases. A traditional classification involves
distinguishing between "core" basis functions and "valence" basis.
Core functions typically consist of Gaussian-type orbitals with
large exponents (more localized), while valence functions with
smaller exponents (more diffuse). However, it is important to note
that this classification is inherited from Slater orbitals and does
not hold much significance in this context. We should always keep
in mind that these basis functions do not represent atomic orbitals.
In fact, the "core" functions may contribute significantly to the
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highest occupied valence orbitals. Some classifications used are
the following:

Minimal Basis Sets: The early Gaussian contractions were de-
rived by least-square fitting to Slater orbitals. The number
of Gaussian-type orbitals (GTOs) used to represent a single
Slater orbital, known as "zeta," served as a measure of the
set’s quality. A minimal basis set, or single zeta basis set,
contains a single basis function corresponding to each occu-
pied atomic orbital. It represents the smallest set that can be
reasonably used in any calculation.

Double-zeta (DZ) and Triple-zeta (TZ) Basis Sets: Double-zeta ba-
sis sets involve considering two basis functions for each
atomic orbital, replacing each GTO of a minimal basis set.
These basis functions differ in their orbital exponents. For
instance, double-zeta sets employ two functions for H or He,
ten functions for Li to Ne, and so on. Similarly, triple-zeta
basis sets follow the same principle but employ three basis
functions with varying orbital exponents.

Split-Valence (V) Basis Sets: Since valence electrons play a sig-
nificant role in bonding, it is common to represent valence
orbitals using a larger number of basis functions, than the
number used for core orbitals. These basis sets are known
as split-valence basis sets and typically use two GTOs for
each valence atomic orbital and one GTO for each inner-
shell atomic orbital. The inclusion of different orbitals with
varying spatial extents allows the electron density to adjust
appropriately to the molecular environment. The letter V
denotes split-valence sets. For example, DZV represents a
basis set with one contraction for core orbitals and two con-
tractions for valence orbitals. It is worth noting that assigning
more basis functions to valence orbitals does not necessarily
mean incorporating more GTFs or primitives. Generally, core
orbitals are represented by long contractions consisting of
numerous GTFs to accurately capture the cusp of the 𝑠-type
function at the nucleus.

Polarization (P) Basis Functions: While basis sets might be enough
to describe orbitals of isolated atoms, when they are per-
turbed, their orbitals will typically need more "freedom"
(more functions) to describe the distortion. Let us take the
hydrogen atom as an example. When isolated, the basis func-
tion needed to describe its occupied orbital is just the 1𝑠 GTO.
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However, in the presence of an electric field, the charge dis-
tribution becomes distorted and loses its spherical symmetry
due to polarization. In this case a single 1𝑠 GTO is no longer
suitable to describe this orbital, which needs the original 1𝑠
GTO plus a 𝑝-type function. The same happens in a chemical
environment, so more basis functions might be added to
describe this effect. For example, 𝑑-type functions which are
not occupied in first-row atoms, play the role of polarization
functions for the atoms from Li to F (that’s why you will see
a 𝑑-type GTO in the basis set used in this work). The ‘zeta’
terminology is often complemented with a description of
the polarization functions. Thus, DZP means double-zeta
plus polarization, TZP for triple-zeta plus polarization, and
TZVP means a triple-zeta split valence polarized basis set.
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6 Overview

An overview of the general sequence of calculations and analysis
performed in this work is presented in Figure 6.1.

A The investigation of static properties began with constant-
pressure structure optimizations for both the 𝐶2/𝑐 and
𝐶𝑚𝑐𝑒 phases. The energy calculations were performed us-
ing Density Functional Theory (DFT) with the PBE0 hybrid
exchange-correlation functional. The long-range dispersion
effects, which are particularly significant in a molecular solid,
were included using Grimme’s D3 method.
The configurational energies of the optimized structures
were used to evaluate the static stability of each phase at
different pressures. The wavefunctions at zero pressure were
used as input for Diffusive Monte Carlo calculations to obtain
a more accurate assessment of static stability and dispersive
energy.

B Subsequently, a quasi-harmonic vibrational analysis was per-
formed using a supercell approach with 300 atoms. This
analysis involved calculating the static energy for small
atomic displacements in the supercell using DFT. The vibra-
tional frequencies and phonon dispersion spectra were then
obtained to evaluate the dynamic stability of each structure.
The zero-point energy was calculated from the vibrational
frequencies and added to the static energy to obtain the
internal energy.
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Figure 6.1: Diagram presenting the overall sequence of calculations and analysis performed in this work.

C The Birch-Murnaghan equation of state was fitted to the internal
energy versus volume, which provided the pressure-volume-
energy relationship for each phase. It should be noted that
the pressure calculated from the equation of state is different
from the pressure imposed during structure optimization.
The pressure during optimization is estimated using con-
figurational energy gradients, while the pressure calculated
through the equation of state includes vibrational contribu-
tions in the form of zero-point energy.

D The equations of state were used to obtain a continuous function
of internal energy𝑈 as a function of pressure. Adding the
𝑃𝑉 term resulted in the continuous enthalpy𝐻 (or Gibbs free
energy at 0 K) as a function of pressure for each phase. Finally,
we determined the enthalpy difference Δ𝐻 by subtracting
the equations and estimated the pressure of transition by
solving Δ𝐻 = 0.

Further details on the conditions used in the calculations are given
in the following sections.
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All DFT calculations were performed using CRYSTAL17, using
the def2-TZVP polarized triple-zeta-valence Gaussian basis set,
and the hybrid PBE0 exchange-correlation functional [45, 48, 49]
plus Grimme’s D3+ABC dispersion correction, including three-
body terms [31, 46, 47]. Grimme’s D3 method adds a dispersive
energy that is parameterized on atomic distances and angles,
including two- and three-body terms. This approach has shown to
be suited for van der Waals complexes as well as for intramolecular
noncovalent interactions, and is extensively and successfully used
in simulations of molecules, molecular complexes, and molecular
solids [32].

This set of methods is hereby referred to as PBE0+D3(ABC)/TZVP.
Overall, given the minute difference in energy between the two
studied structures, we have used very tight convergence and
tolerance parameters, and high-density sampling and integration
grids. These criteria are further explained below.

7.1 Convergence tests

Convergence tests were performed to evaluate the effect of the
main CRYSTAL settings for structure optimization on the 𝛼-F2

𝐶2/𝑐 crystal structure, namely the tolerance on the gradient, the
tolerance on the atomic displacements, and maximum trust radius.
The optimization convergence is tested for the root-mean-square
(RMS) and the absolute value of the largest component of both the
gradients and the estimated atomic displacements. The tolerance
for the largest component of the gradient and atomic displace-
ments is 1.5 times the tolerance on their respective RMS. When
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these four conditions are all satisfied at a time, the optimization
is considered complete. The potential energy surface (PES) of
molecular crystals often exhibits a flat landscape, so very tight
tolerances on the gradient must be used. Otherwise, the algorithm
may converge prematurely. Also, for this reason, we imposed a
limit on the maximum trust radius allowed in search of the mini-
mum in the potential energy surface. This parameter is essential
for optimizing the structure of molecular crystals having a flat
energy hypersurface. The trust region is the region of the objective
function (the potential energy, in our case) that will be approxi-
mated by a simpler (usually quadratic) model. The step size of the
optimization algorithm (changes in lattice parameters and atomic
positions in our case) varies inversely proportional to the curvature
(the Hessian, in higher dimensions) at the current position on the
energy hypersurface. In flat regions with small curvature, the step
size tends to be large, and the algorithm may miss a minimum
due to an oversized step. The optimization convergence tests were
performed using the experimentally determined structure for 𝛼-F2

[30] relaxed using the default CRYSTAL17 optimization parameters
as the starting point.

7.2 Static stability

We chose very strict optimization parameters, determined in the
convergence tests, for the optimization of the crystal structure of
fluorine 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 phases. Namely 10−5 a.u. for the tolerance
on the RMS of the gradient, 10−4 a.u. for the tolerance of the RMS
of atomic displacements, 10−11 𝐸h for the tolerance of primitive cell
energy change between optimization cycles, and a maximum trust
radius of 0.01. Notice that the default value for this parameter is
4.0.

We used the following conditions in the self-consistent field cycles
for the calculation of the static energies. Threshold for convergence
on the total energy of 10−12 𝐸h. An extra-extra-large pruned integra-
tion grid using the Becke method [50], which consists of 99 radial
points and 1454 angular points in the regions relevant for chemical
bonding. This is a very large and accurate grid that guarantees
accurate integration of the exchange-correlation potential when
derivatives of energy have to be computed [51].
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We used the following parameters to control truncation and the
accuracy of the calculation of the bielectronic Coulomb and Hartree-
Fock exchange series. For the Coulomb series, we used 10−10 for
both the penetration and overlap thresholds for Coulomb integrals.
For the exchange series, we also used 10−10 as the overlap threshold
for the HF exchange integrals, and 10−20 and 10−40 as the threshold
of the other two series that compose the exchange-correlation term
of the energy [51]. Finally, we used a sampling integration grid
in reciprocal space of 11×11×5 that follows the Monkhorst-Pack
scheme. Please see the Supplementary Material for details on how
these criteria are translated into CRYSTAL17 input parameters.

These conditions were chosen to ensure an energy convergence
within 1.5 µ𝐸h/atom, which is actually smaller than the expected
accuracy of DFT calculations (see below). Furthermore, these same
conditions were also employed in obtaining the parameters of
the Birch-Murnaghan equation of state for each fluorine crystal
structure.

7.3 Quantum Monte Carlo

Diffusion Quantum Monte Carlo calculations were performed
using the CASINO code [35, 52]. A trial QMC wave function was
obtained by multiplying the determinant of single-particle orbitals
from a DFT/PBE0 calculation by a Jastrow correlation factor [33,
35]. Density functional theory calculations were performed using
CRYSTAL17 and the previously optimized 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 crystal
structures. The single-particle determinant used to start the QMC
calculations was obtained with the PBE0 exchange-correlation
functional. Calculations were performed using the Trail and Needs
Dirac-Fock pseudopotential [53]. The corresponding aug-cc-pVTZ-
CDF correlation consistent Gaussian basis set had its outermost
diffuse 𝑑 function removed [54, 55].

The Jastrow factor allows including correlation effects on the
ground state energy by considering contributions from isotropic
electron-electron and electron-nucleus terms (𝑢 and 𝜒 terms),
isotropic electron-electron-nucleus ( 𝑓 term), and plane-wave ex-
pansion term (𝑝 term). Calculations were performed using an
expansion order of ten for the 𝑢 and 𝜒 terms, three for the 𝑓

term, and seven reciprocal lattice vectors in the 𝑝 term expansion
[35]. The trial wave function was optimized by minimizing the
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Figure 7.1: Brillouin zone for the C-
centered monoclinic lattice, to which
belongs the 𝛼 phase of fluorine,
𝐶2/𝑐 space group. Taken from [56]

Figure 7.2: Brillouin zone for the
C-centered orthorhombic lattice, to
which belongs the hypothesized
high-pressure phase of fluorine,
𝐶𝑚𝑐𝑒 space group. Taken from [56]

variational Monte Carlo (VMC) total energy variance over 106 elec-
tron configurations. Finally, DMC calculations were performed for
2x2x2 (32 atoms, 85000 and 94000 diffusion Monte Carlo steps for
the 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 structures, respectively) and 3x3x3 supercells
(108 atoms, 52000 DMC steps for both structures), and from these
results, the DMC total energies for the 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 structures
were extrapolated to the infinite size limit. All calculations were
performed using a time step of 0.003 atomic units.

7.4 Dynamical stability

The dynamical stability of the 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 fluorine structures
were assessed by calculating the phonon dispersion spectra at
different pressures along a chosen reciprocal space path [56]. The
Brillouin zones of both lattices are presented in Figures 7.1 and 7.2.
Calculations were performed using the supercell approach, with
the primitive cell expanded by 5, 5, and 3 copies along the 𝑎, 𝑏,
and 𝑐 crystallographic axis, respectively.

Phonon frequencies were calculated by finite displacements of
the atoms by 0.003 Å in this 5 × 5 × 3 supercell. The integration
sampling in this supercell is performed on a Monkhorst-Pack grid
with shrinking factors chosen in order to maintain a density of
points of 0.2 2𝜋/Å[57].
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8.1 Crystal and electronic structure

The crystal structure optimizations performed at constant pressure
have resulted in structures that align well with the experimentally
observed 𝛼-F2 phase at ambient pressure and the theoretically pre-
dicted 𝐶𝑚𝑐𝑒 phase at higher pressures A comparison is presented
Table 8.1.

Table 8.1: Lattice parameters and atomic positions of the 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 phases obtained from the structure optimization
using DFT compared to experimental (𝛼-F2, 𝐶2/𝑐) and theoretical structures from other works. The Wyckoff positions in
both phases are in the 8 𝑓 site.

Theoretical Experimental

This work Ref. [24] Ref. [29] Refs. [17, 18] Ref.[30]

𝐶2/𝑐

𝑃 (GPa) 0 0 0 Ambient Ambient
𝑇 (K) - - - 23 10
𝑎 (Å) 5.334 5.4009 5.494 5.50(1) 5.4780(12)
𝑏 (Å) 3.166 3.2657 3.364 3.28(1) 3.2701(7)
𝑐 (Å) 7.300 9.4781 7.113 7.284(1) 7.2651(17)
𝛽 (◦) 102.94 133.55 103.41 102.17(2) 102.088(18)
𝑥 0.2744 -1.10808 0.2662 0.285 0.2740(14)
𝑦 0.3181 0.07600 0.3263 0.317 0.315(2)
𝑧 0.0920 -0.09642 0.0961 0.0997 0.0942(12)

𝐶𝑚𝑐𝑒

𝑃 (GPa) 5 20 50
𝑇 (K) - - -
𝑎 (Å) 4.586 4.3115 4.052
𝑏 (Å) 3.117 2.8812 3.683
𝑐 (Å) 6.331 5.8363 5.75
𝑥 0.0000 -0.5000 0.0000
𝑦 -0.4012 0.3799 0.1096
𝑧 0.4028 1.39328 0.3975
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It is notable the discrepancy in the 𝑐 parameter estimated using
DFT with the PBE exchange-correlation functional, as reported by
Lv et al. [24]. The elongated 𝑐 parameter can be primarily attributed
to an increased 𝛽 angle. It appears that this difference is caused
by a different choice of the repeating unit in the lattice by Lv et
al. When adopting a unit closer to the one implemented in this
work, the 𝑐 and 𝛽 parameters approach values of 7.69 Å and 112◦,
respectively. Refer to Figure C.1 for a schematic representation
illustrating this point.

The characterization of the electronic structure of the material, at
a more generalized level, can be accomplished by examining the
band structure and the density of states, which are depicted in
Figure 8.1. One significant feature common to both phases is a
direct band gap at the Γ point. This suggests that an electronic
transition could potentially occur without the need of momentum
transfer from the crystal lattice.

Electronic band broadening

The broadening of electronic
bands in response to increased
pressure stems from three prin-
cipal mechanisms. Firstly, an
increase in pressure leads to
a reduction in interatomic dis-
tances. This reduction results
in a greater overlap of wave-
functions between neighboring
atoms, offering electrons more
possibilities to transition be-
tween states that were orig-
inally localized to particular
atoms, which is translated into
a broader range of energy. Sec-
ondly, pressure-induced defor-
mations within the solid modify
the energy landscape of the ex-
ternal potential. This alteration
can introduce new permissible
energy levels. Finally, from the
viewpoint of quantum mechan-
ics, constricting the space in
which electron wavefunctions
are confined increases their ki-
netic energy. This is a conse-
quence of the Heisenberg Uncer-
tainty Principle and contributes
to the further broadening of en-
ergy bands.

The reduction in crystal dimensions with increasing pressure
results in the expected broadening of the electronic band, as
observed in the density of states. Additionally, the phase transition
led to an increase in crystal symmetry, causing the overlap of bands
that were separated in the 𝐶2/𝑐 phase. This is particularly evident
when comparing the Z-F1 path in 𝐶2/𝑐 with the Z-T path in 𝐶𝑚𝑐𝑒,
or the Z-I1 (𝐶2/𝑐) with the Z-A path (𝐶𝑚𝑐𝑒). These paths are
somewhat comparable (see Figures 7.1 and 7.2).

Generally, a material is characterized as a conductor if it shows
non-zero occupation at the Fermi level and an absence of a band
gap, a result of overlapping valence and conduction bands. Prior
computational studies established that fluorine possesses a band
gap of 2.58 eV at 6 GPa, and 2.28 eV at 100 GPa for the 𝐶2/𝑐 and
𝐶𝑚𝑐𝑒 phases, respectively [24]. It is noteworthy that these results
were obtained using the PBE exchange-correlation functional,
which is known to underestimate the band gap. For comparison,
we also estimated the band gap using this same functional for the
𝐶2/𝑐 phase at zero pressure and found a value of is 3.2 eV. A more
accurate estimation of the band gap can be obtained using the
hybrid PBE0, which results in 7.24 eV for the 𝐶2/𝑐 phase at zero
pressure, and 7.16 eV for the 𝐶𝑚𝑐𝑒 phase at 5 GPa. Clearly, both
phases are insulators.

Despite our results being fundamentally different from those
reported by Tantardini et al. [29], they are in total alignment
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Figure 8.1: Electronic band structures and density of states for the 𝐶2/𝑐 phase at 0 GPa and 𝐶𝑚𝑐𝑒 phase at 5 GPa. In the
band plots, filled circles indicate the maximum of the valence and open circles indicate the minimum of the conduction
bands.
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with the scarce experimental data available for the alpha phase
of fluorine and the theoretical findings previously mentioned.
Meyer et al., in one of the pioneering studies on fluorine phases,
observed that "(...) fluorine become hard, brittle, and opaque when
they transform from their high-temperature forms to lower-temperature
forms, fluorine acquiring, not surprisingly, a slight yellowish tint"[17].
No mention is made of anything resembling a metallic solid.
Furthermore, metals typically display, at best, very broad infrared
absorption bands due to their high free-electron density and
substantial electrical conductivity. Contrarily, the alpha phase of
fluorine shows well-defined infrared absorption bands, as depicted
inFigure 8.2, providing yet another strong indication against the
metallic nature.

Figure 8.2: Far infrared spectra of
𝛼-F2 measured at ambient pressure
and 20 K. Taken from Niemczyk et
al. [58].

The reduction in crystal dimensions with increasing pressure
causes the expected spread in the electronic band, as is evident in
the density of states. Furthermore, the increase in crystal symmetry
in the phase transition caused the superposition of bands that were
split in the 𝐶2/𝑐 phase. Most notably comparing the Z-F1 path in
𝐶2/𝑐 with the Z-T path in 𝐶𝑚𝑐𝑒; or the Z-I1 (𝐶2/𝑐) with the Z-A
path (𝐶𝑚𝑐𝑒). These paths are somewhat comparable (see Figures
7.1 and 7.2)

8.2 Static stability

Total energies from Density Functional Theory rarely have an
accuracy better than 3 m𝐸h, and one cannot assuredly increase
this accuracy systematically [59]. Nevertheless, a DFT calculation
can be used as a good starting point for other techniques aiming
to increase total energy accuracy by a rigorous account of the
correlation energy. Accordingly, taking the structures optimized at
the DFT/PBE0+D3(ABC)/TZVP level of theory, Diffusion Monte
Carlo (DMC) calculations were performed to determine, with
higher accuracy, the difference in static energy between the 𝐶2/𝑐
and 𝐶𝑚𝑐𝑒 phases.

Figure 8.3 presents the average local energy, the reference energy,
and the best estimate of energy as the Diffusion Monte Carlo
progresses. At the beginning of the simulation, the best estimate of
the energy falls from the initial value (from the trial wavefunction)
to around the correct ground-state energy in what is called the
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Figure 8.3: Evolution of energy as the Diffusion Monte Carlo simulation progresses for the four simulations performed.
The estimated energy and respective error in each case is determined by the mean and standard deviation of the best
estimate of energy during the statistics-acummulation phase.
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equilibration phase. Following the equilibration is the statistics-
accumulation phase. At this stage, the best estimate of energy will
be very close to the correct value and we allow the simulation to
propagate in order to accumulate enough energy data to estimate
the DMC energy with a sufficiently low error bar. The energy and
error are obtained from the best estimate of energy during the
statistics-accumulation phase (green curve in Figure 8.3). From
the energies and the inverse of the supercell size of the different
simulations, it is possible to extrapolate the energies to the infinite
cell size, shown in Figure 8.4

The DMC difference in static energy between fluorine 𝐶𝑚𝑐𝑒 and
𝐶2/𝑐 crystal structures, at zero pressure and temperature (without
zero-point energy contribution), amounts to 270(130)µ𝐸h per F
atom, thus giving further evidence that the 𝐶2/𝑐 phase is indeed
the 𝛼-F2 lowest energy structure.

For comparison, the difference in static energy at the DFT+D3(ABC)/TZVP
level of theory is 40 µ𝐸h/atom. The difference reported by Mattsson
et al. (i.e., the difference between cohesive energies, not considering
the vibrational ZPE) is 65 µ𝐸h per F atom [23]. This last result was
obtained by comparing the cohesive energies of a 𝐶2/𝑐 structure,



52 8 Results and Discussion

Figure 8.5: (Top) Internal energy
versus volume as calculated at the
DFT+D3(ABC)/TZVP level of the-
ory, and the fitted Birch-Murnaghan
equation of state (BM EOS) for
𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 F2. The inset shows
the pressure-volume relationship ac-
cording to the fitted EOS. (Bottom)
Difference in enthalpy between the
two fluorine phases. The 𝐶2/𝑐 struc-
ture is used as a reference. In both
panels, the pressure scale was deter-
mined by the respective equation of
state of each phase.
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as determined experimentally, and a 𝐶𝑚𝑐𝑒 structure extrapolated
from the other halogens and optimized by a p-LMP2 calculation
(maintaining the intramolecular bond length fixed). Hence, part
of the difference with the present DMC result might be ascribed
to using different structures. Anyway, as we shall see, the fluorine
𝐶𝑚𝑐𝑒 structure exhibits a dynamical instability at zero pressure,
thus suggesting that the 𝐶𝑚𝑐𝑒 crystal structure actually corre-
sponds to a saddle point in the solid fluorine configurational space,
which makes the comparison of static energies at 0 GPa of lesser
importance.

Figure 8.5 exhibits the internal energy (static energy plus zero
point energy in the quasi-harmonic approximation) for 𝐶2/𝑐 and
𝐶𝑚𝑐𝑒 𝛼-F2, optimized for a range of pressures up to 1.7 GPa for
𝐶2/𝑐 and from 1.0 GPa up to 4.0 GPa for 𝐶𝑚𝑐𝑒, as a function of
volume and pressure. These ranges of pressure were limited by
the particularities of the system, as we shall see in the following
sections.

Fitting of the Birch-Murnaghan equation of state (EOS) [60, 61]
to the internal energy versus volume data for the 𝐶2/𝑐 phase
yields an equilibrium volume 𝑉0 = 15.89(2)Å3/atom, and a bulk
modulus and its first derivative with pressure 𝐵0 = 6.38(5)GPa and
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𝐵
′
0 = 6.1(2), respectively. Fitting the EOS to the 𝐶𝑚𝑐𝑒 phase results

in an equilibrium volume 𝑉0 = 15.2(2)Å3/atom, a bulk modulus
𝐵0 = 10.3(1)GPa, and first derivative of the bulk modulus with
pressure 𝐵′

0 = 4.0(1). The bottom panel of Figure 8.5 presents the
difference in enthalpy between the two structures as a function of
pressure, as calculated using the fitted EOS.

The static energies of both structures become equal at around
2.7 GPa, accompanied by the spontaneous transition during the
optimization (see details below). When accounting for the zero-
point energy to compose the internal energy, there is, in fact, no
transition, as the internal energy of the 𝐶𝑚𝑐𝑒 is higher than the
internal energy of 𝐶2/𝑐 for all the range of pressures evaluated.
Finally, when adding the PV term to the internal energy to compose
the enthalpy (or the Gibbs free energy at 0 K), the equilibrium
between the two phases occurs at 1.6 GPa, as determined by the
EOS.

We can improve this estimate by considering the Quantum Monte
Carlo results, which were incorporated into the EOS by shifting
the curves such that the energy difference at P = 0 GPa corre-
sponds to the difference obtained from the Quantum Monte Carlo
calculations. This is equivalent to fixing the 𝐸0 parameters in the
equations of state such that 𝐸0,𝐶𝑚𝑐𝑒−𝐸0,𝐶2/𝑐 equals the QMC result.
The resulting difference in enthalpy as a function of pressure is
presented in Figure 8.6
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Figure 8.6: Difference in enthalpy
between the two fluorine phases as
determined by DFT and using the
QMC result. The shaded area repre-
sents the uncertainty carried from
the QMC result. The 𝐶2/𝑐 structure
is used as a reference. The pressure
scale was determined by the respec-
tive equation of state of each phase.

By considering the Quantum Monte Carlo energy difference, the
equilibrium between the two phases occurs at 8.9 GPa, which
constitutes our best estimate for the 𝐶2/𝑐 ⇌ 𝐶𝑚𝑐𝑒 transition pres-
sure at zero temperature. A more comprehensive consideration of
long-range correlation effects with diffusion Monte Carlo naturally
results in a larger difference in energy between the two phases
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Figure 8.7: Evolution with pressure
of the phonon dispersion spectra for
the fluorine 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 struc-
tures.

when compared to density functional theory, since dispersion
effects are generally attractive. This, in turn, results in a shift in the
pressure of transition towards higher values. The uncertainty in the
QMC result renders a range in pressure from 5.4 GPa to 11.1 GPa,
represented by the shaded area in Figure 8.6. It’s important to
note that this adjustment implicitly assumes the correlation energy
causes a constant shift in the energy difference across all pres-
sures, which does not accurately reflect actual physical systems.
To account for this, a Quantum Monte Carlo simulation would
need to be run for each pressure evaluated, a task that was not
accomplished for being too computationally demanding.

8.3 Dynamical stability

The dispersion spectra of fluorine 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 structures
optimized at different pressures are presented in Fig Figure 8.7 (a
more comprehensive dispersion plot is presented in Figures C.5
and C.6). While the phonon spectra for the 𝐶2/𝑐 structure indicate
this phase is stable at least up to 1.5 GPa, the 𝐶𝑚𝑐𝑒 phonon
spectrum at 0 GPa has a portion of an acoustic branch and an
optical branch, along the Γ-Z direction, which exhibits imaginary
(negative) frequencies, thus signaling a dynamical instability. This
dynamical instability is possibly caused by the repulsive head-
to-head interaction of the F2 molecules in different molecular
layers.

Indeed, the potential energy curve for displacements along the
eigenvector of the 𝐴𝑢-symmetry, Γ-point mode of imaginary fre-
quency, depicted in Figure 8.10, shows that this head-to-head
configuration corresponds to an energy maximum (a saddle point
in the configurational energy landscape).

This vibrational mode corresponds to a shear sliding of the central
layer of F2 molecules. Furthermore, pressure stabilizes this head-
to-head configuration, thus making the fluorine 𝐶𝑚𝑐𝑒 structure
dynamically stable with increasing pressure. More specifically, the
frequency of the mode at Γ becomes positive above 0.5 GPa. At
this pressure, however, the energy potential is highly anharmonic,
and a proper description in the quasi-harmonic approximation is
only possible above 1.0 GPa. This fact imposes a lower limit on the
pressure range for which we evaluated the internal energy of the
𝐶𝑚𝑐𝑒 phase. A comparison of the potential energy as a function
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of the deformation along this mode and its respective harmonic
potential at different pressures, and without an energy shift can be
found, respectively, in Figure 8.8 and Figure 8.9.

In Figure 8.9 it is interesting to notice that with increasing pres-
sure, the potential well exhibits a subtle tendency of becoming
flatter. This tendency in made clearer in Figure C.7, in which the
gradient of the energy with respect to displacement along the this
eigenvector is plotted against displacement. We can observe that,
for a given displacement, the gradient seem to reach a maximum
around 0.5 GPa and then decrease. If interpreted as a component
of the force along this shear direction, we see a decrease in the
resistance to the shear movement between the molecular layer. This
phenomenon was not further investigated.
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Figure 8.8: Potential energy versus
displacement along the eigenvector
of theΓ-point mode of imaginary fre-
quency for the orthorhombic 𝐶𝑚𝑐𝑒
fluorine structure at different pres-
sures. H stands for harmonic. MCD
stands for Maximum Classical Dis-
placement [51].
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Figure 8.9: Potential energy versus
displacement along the eigenvector
of the Γ-point unstable mode for the
orthorhombic 𝐶𝑚𝑐𝑒 fluorine struc-
ture at different pressures.

One could argue that the unstable mode seen below 0.5 GPa
is an indication of poor structure optimization. As a reminder,
the structure optimization searches for a combination of lattice
parameters and atomic positions of the space group in which the
energy gradient vanishes, and that is precisely what was found.
The structure found corresponds to the set of parameters and
atomic positions that minimizes the potential energy under the
constraints imposed by the 𝐶𝑚𝑐𝑒 space group. The calculation of
the vibrational frequencies involves the second derivative of the
energy relative to atomic displacements that are not restricted to
the same constraints of the space group used in the optimization.
It is, therefore, reasonable to theoretically observe an optimized
structure with dynamical instabilities. This, however, does not
represent a thermodynamically stable structure and will not be
empirically observed.

In heavier halogens, the intermolecular head-to-head configuration
is stabilized by the electrostatic attraction between the positive
𝜎-hole of one molecule and the negative charge density of the
neighboring molecule, lowering the energy of the central configu-
ration of Fig. 8.10 which thus becomes a minimum [23]. In 𝐶𝑚𝑐𝑒
fluorine, at 0 GPa, this head-to-head interaction is mostly repulsive
because of the absence of 𝜎-holes in the F2 molecules. However,
this repulsive interaction is reduced by a slight shear displacement
of the molecular planes. This can be observed both in the atomic
displacements along the eigenvector of the unstable 𝐴𝑢-symmetry
mode (as seen in the off-center structures in Fig. 8.10) and in the
𝐶2/𝑐 structure (see the bottom row of Fig. 1.6). Therefore, the
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Figure 8.10: Potential energy versus
displacement along the eigenvector
of the Γ-point mode of imaginary
frequency for the 𝐶𝑚𝑐𝑒 fluorine
structure at zero and 0.75 GPa. The
atomic displacements depicted in
the diagrams were exaggerated in
order to make them clearer. MCD
stands for Maximum Classical Dis-
placement [51]. Both curves were
shifted in order to match the central
point to the reference energy.
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evidence suggests that the dynamical instability of the fluorine
𝐶𝑚𝑐𝑒 phase at 0 GPa is ultimately a manifestation of the lack of
𝜎-holes on the fluorine molecule.

The Z point, coordinates (0,0,½), in the first Brillouin zone also
exhibits dynamical instabilities. This wave vector is perpendicu-
lar to both 𝑎 and 𝑏 lattice axis and the wave-like distortions of
the crystal are perpendicular to the 𝑐 axis. In other words, all
unstable modes in the Γ-Z path correspond to shear deformations
of the molecular layers that render the head-to-head interaction
between F2 molecules. The depiction of the crystalline structure
with eigenvectors for these modes is presented in Figure 8.11.

We built electrostatic potential maps of F2 molecules in the crys-
talline structure of 𝐶2/𝑐 at 0 GPa and 𝐶𝑚𝑐𝑒 at 5 GPa, shown in
Figure 8.12, in order to verify if the increase in pressure could
have caused the development of sigma holes and, thus, explain the
stabilization of the 𝐶𝑚𝑐𝑒 structure at high pressures. The electro-
static potential (ESP) was plotted on an electronic charge density
isosurface of 0.04 𝑎0

−3. We did not observe any significant change
in electrostatic potential on the poles of the diatomic molecules
where 𝜎-holes are observed in chlorine, bromine, and iodine. In-
deed, at moderate pressures, we don’t expect any major changes in
the electronic density of fluorine, the most electronegative element
of the periodic table. We are currently unaware of what could
cause this stabilization.

For reference, Figure 8.13 shows the electrostatic potential around
the halogens’ diatomic molecules calculated using the Parametriza-
tion Method 6 (PM6) in MOPAC2016, and using DFT in with the
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Figure 8.11: Phonon dispersion spectra for the fluorine 𝐶𝑚𝑐𝑒 structure at 0 GPa with representations of their eigenvectors
on an expanded 1 × 1 × 2 primitive cell. All eigenvectors have null c (z) components, meaning that they represent
oscilations of pure shear deformation between the layers of molecules. It should also be noted that the fluorine atoms in
their respective molecule move as a single entity.

B3-LYP exchange-correlation functional and the def2-QZVP basis
set [62]. The potentials are mapped on a surface constructed as
a union of atom-centered spheres. The radii of these spheres are
equal to the respective van der Waals radius + 1 Å. If such a surface
is constructed in the crystalline structure of fluorine, the volumes
will intersect high-density regions of neighboring atoms.
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Figure 8.12: Electrostatic potential
(ESP) mapped on a 0.04 𝑎0−3 elec-
tronic density isosurface of the flu-
orine diatomic molecules in the 𝛼
phase (𝐶2/𝑐, 0 GPa, left) and the
hypothesized high-pressure phase
(𝐶𝑚𝑐𝑒, 5 GPa, right).

Figure 8.13: Electrostatic potential
(ESP) calculated with DFT and PM6
for the halogens. Adapted from [62]

Figure 8.14: Electrostatic potential
(ESP) mapped on a 0.04 𝑎0−3 elec-
tronic density isosurface of chlorine,
𝐶𝑚𝑐𝑒

In order to provide a more appropriate and direct comparison with
the next heavier halogen, we calculated the electronic density and
electrostatic potential for chlorine, 𝐶𝑚𝑐𝑒 space group, optimized
under the same conditions used for fluorine. We used the same
exchange-correlation functional, the same D3(ABC) correlation
correction, and the same type of basis set. Figure 8.14 presents the
calculated potential also on a 0.04 𝑎0

−3 isosurface. Notice that the
electrostatic potential color scales in Figure 8.12 and Figure 8.14 are
the same. While both chlorine and fluorine exhibit more positive
regions on the poles of the diatomic molecules, chlorine possesses
a more positive region. Notice that this positive region in fluorine
has the same electrostatic potential as the equatorial region of the
bond. In chlorine, the polar region presents a more positive ESP.

Finally, we have observed small negative portions of several
branches in all dispersion plots. Namely, the Z-Γ-X path for 𝐶2/𝑐
at zero pressure, the Z-Γ path for 𝐶2/𝑐 at 1.5 GPa, and the Γ-Y path
at pressures 0.0 GPa, 1.5 GPa and 3.0 GPa. These are numerical
artifacts from the supercell approach used.

8.4 Pressure-induced phase transition

The space group 𝐶2/𝑐 is a subgroup of 𝐶𝑚𝑐𝑒 and the 𝐶2/𝑐 ⇌
𝐶𝑚𝑐𝑒 transition fulfills the conditions for a second-order phase
transition [63–65]. Accordingly, the 𝐶2/𝑐 fluorine crystal structure
may evolve continuously towards the 𝐶𝑚𝑐𝑒 structure as pressure
increases. In fact, in the constant-pressure optimizations, the 𝐶2/𝑐
phase gradually collapses into the 𝐶𝑚𝑐𝑒 space group for pressures
higher than 1.7 GPa (see Fig. 8.15), essentially precluding the direct
comparison of the energies over all the pressures range in the
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analysis of this pressure-induced phase transition. Notice that this
spontaneous transition to 𝐶𝑚𝑐𝑒 imposes an upper limit on the
pressure range for which we can explore the 𝐶2/𝑐 phase.
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Figure 8.15: Fluorine lattice parameters as a function of the pressure imposed in the structure optimizations. The dotted
lines are a guide to the eyes.

The order parameter for the 𝐶2/𝑐 ⇌ 𝐶𝑚𝑐𝑒 transition is the
spontaneous strain 𝜖13, which is the symmetry-breaking strain
given by [66, 67]

𝜖13 =
1
2

(
𝑐𝐶2/𝑐
𝑐𝐶𝑚𝑐𝑒

cos 𝛽𝐶2/𝑐

)
(8.1)

where 𝑐𝐶𝑚𝑐𝑒(𝑐𝐶2/𝑐) is the lattice parameter of the orthorhombic
(monoclinic) phase along the 𝑐-axis, and 𝛽𝐶2/𝑐 is the interaxial
angle in the monoclinic structure. The spontaneous strain 𝜖13 is
represented as a function of pressure in Fig. 8.16, along with 𝜖11,
𝜖22, and 𝜖33, which are the non-symmetry-breaking spontaneous
strains. The order parameter goes to zero at about 2.5 GPa. This
analysis is made by considering solely the static enthalpy (with no
zero-point energy) and the pressure imposed in the optimization. A
more complete description of the order parameter for this transition
would require structure optimizations minimizing the Gibbs free
energy.

There is a close resemblance between the shear deformation behind
the 𝐶2/𝑐 ⇌ 𝐶𝑚𝑐𝑒 transition and the lateral displacement of
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Figure 8.16: Fluorine spontaneous
strains as a function of pressure. dot-
ted lines are a guide to the eyes.
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molecular F2 layers characteristic of the eigenvector of the unstable
Γ-point mode represented in Fig. 8.10, which suggests this latter
may be considered a soft-mode associated to this pressure-induced
phase transition. The other unstable modes in the Γ-Z are also
associated with shear deformations of the molecular planes, though
with wavelengths that exceed the lattice parameter 𝑐, and, therefore,
we can apply the same rationale.

8.5 Raman spectra

The Raman spectra of the two fluorine phases were simulated
to verify how easily the proposed phase transition would be
detected by high-pressure Raman spectroscopy. Figure 8.17 shows
the non-resonant, polycrystalline Raman spectra calculated for the
fluorine 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 crystal structures optimized at 1.5 GPa,
a pressure at which both phases are dynamically stable. These
spectra were obtained considering the atomic motions as purely
harmonic. These spectra are also compared to the experimental
Raman spectrum of 𝛼-F2 at 12 K and 1.5 GPa using a laser with
wavelength in the visible light [19]. The Raman spectra of 𝛼-F2

in the 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 structures exhibit two main peaks in the
range of approximately 100 and 150 cm−1. In the 𝐶2/𝑐 phase, the
calculated peaks primarily differ in their relative intensities and
are slightly shifted towards higher Raman shifts compared to
the experimental Raman spectrum. Despite these differences, the
calculated spectrum shares the same number of peaks and a similar
profile to the experimental result.
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Figure 8.17: Calculated Raman spec-
tra at 1.5 GPa for the𝐶2/𝑐 and𝐶𝑚𝑐𝑒
fluorine crystal structures and the
experimental Raman spectrum of 𝛼-
F2 at 1.5 GPa and 12 K, as measured
by Schiferl et al. [19].

The primary distinction between the Raman spectrum calculated
for the 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 structures is the presence, in the former,
of a strong Raman peak assigned to a librational mode at 64 cm−1

(slightly less for the experimental result). Indeed, the Raman
spectra of the 𝐶𝑚𝑐𝑒 and 𝐶2/𝑐 fluorine structures are sufficiently
different that a pressure-induced phase transition between these
two structures would be promptly detected in the experimental
study in which the Raman spectrum of fluorine was measured
up to 6 GPa at temperatures as low as 10 K [19]. Therefore, the
experimental observation that the fluorine Raman spectra at this
thermodynamic conditions still exhibit the Raman peak assigned
to the low-frequency librational mode of the C2/c suggests that
6 GPa as a lower limit for the pressure of 𝐶2/𝑐 → 𝐶𝑚𝑐𝑒 phase
transition at that temperature. This discrepancy between the ob-
served stability of the fluorine 𝐶2/𝑐 structure near 10 K up to 6 GPa
in the experimental Raman study and the 𝐶2/𝑐 → 𝐶𝑚𝑐𝑒 phase
transition at about 1.6 GPa determined by the equations of state
in this work may have its origin in the lack of the anharmonic
contributions in our calculations, as well as a better method for
accounting for the long-range correlation effects.

The F2 stretching mode frequency is very similar in both structures
(confirming the dispersion spectra), meaning that this mode does
not significantly contribute to the Gibbs free energy difference
between the competing structures. For this reason, the vibrational
contribution to the Gibbs free energy difference is almost entirely
determined by the fluorine libration modes, which, in turn, strongly
depends on the correct account of dispersive interactions. Therefore,
from the computational point of view, the equilibrium between
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the fluorine 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 phases considering both the ZPE and
vibrational entropy would require an accurate description of these
dispersive effects. Long-range dispersion interactions are included
in a parametrized, semi-empirical way at the PBE0+D3(ABC) level
of theory. Although quantum Monte Carlo (QMC) calculations can
precisely capture the dispersive contribution, their computational
expense renders them unfeasible for calculating the extensive set of
vibrational frequencies necessary to accurately estimate ZPE and
vibrational entropy. Furthermore, in this particular case of fluorine,
the dynamical instability of the 𝐶𝑚𝑐𝑒 structure at low pressures
suggests the need to go beyond the quasiharmonic approximation
to allow incorporating the vibrational contribution to the Gibbs
free energy.



9 Conclusions

Based on DFT calculations on the PBE0+D3(ABC)/TZVP level of
theory and QMC calculations, further evidence is given that 𝛼-F2

crystallizes into a 𝐶2/𝑐 structure at 0 K and 0 GPa. Phonon disper-
sion analysis suggests that 𝛼-F2 assumes the 𝐶2/𝑐 structure not
only because it is the lower energy structure but also because of a dy-
namical instability of the competing 𝐶𝑚𝑐𝑒 structure. Furthermore,
the observed dynamical instability of the 𝐶𝑚𝑐𝑒 structure can be
related to the absence of 𝜎-holes in the F2 molecules. The repulsive
head-to-head intermolecular electrostatic interaction in fluorine
destabilizes the 𝐶𝑚𝑐𝑒 structure. The molecular arrangement in
the 𝐶2/𝑐 structure, on the other hand, reduces this head-to-head
interaction and, accordingly, makes the 𝐶2/𝑐 structure dynami-
cally stable. In heavier halogens, the presence of 𝜎-holes in the
diatomic molecules’ poles contributes to making the head-to-head
intermolecular electrostatic interaction attractive and dynamically
stabilizes the 𝐶𝑚𝑐𝑒 crystalline structure.

We observed that 𝛼-F2 spontaneously and continuously collapses
into the 𝐶𝑚𝑐𝑒 space group in the range from about 1.7 GPa to
2.5 GPa by performing constant pressure structure optimizations.
The order parameter for the𝐶2/𝑐 ⇌ 𝐶𝑚𝑐𝑒 second-order transition
also goes to zero near 2.5 GPa. It is worth noticing that by doing
structure optimizations at constant pressure, we are minimizing the
static enthalpy, i.e., the enthalpy at 0 K without ZPE contribution.
When considering the enthalpy (static energy + zero-point energy
+ PV term), the equilibrium occurs at 1.6 GPa. The inclusion of the
Quantum Monte Carlo energy difference places the equilibrium at
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8.9 GPa, which is our best estimate for the pressure of transition
between these two fluorine phases in the athermal limit. Other
energy contributions, however small, should change the estimated
transition pressure, as the energy differences between the phases
are subtle. Therefore not much should be read into this pressure
value. Nevertheless, the mechanisms involved in this transition,
as well as its second-order nature, should hold even for a more
in-depth treatment of the energy contributions.

The rigorous calculation of the equilibrium line between the 𝐶2/𝑐
and 𝐶𝑚𝑐𝑒 structures in the fluorine 𝑃-𝑇 phase diagram could be
further pursued by using modern methods of free-energy differ-
ence calculation, including anharmonic effects. However, these
calculations are made particularly complicated by the need to
accurately include the contribution from long-range dispersion
interactions, which are only approximately accounted for in DFT
calculations, thus making this entire endeavor extremely challeng-
ing.
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A
Contraction schemes of Gaussian Basis*

Gaussian Basis functions are essential mathematical tools for
approximating complex orbital behaviors of atoms in materials
simulations. However, their application can be computationally
taxing. The computational complexity of handling integrals over
basis functions increases significantly with the number of functions
in the basis set, which poses a drawback to the efficiency of the
calculations. Therefore, the idea of basis set compactness comes
into play, which aims at creating as accurate a representation of
the orbitals as possible, using the fewest basis functions. Our ideal
basis set comprises localized functions resembling atomic orbitals,
but our chosen Gaussian functions do not correspond closely to
exact Hartree-Fock (HF) atomic orbitals.

To achieve this, we often use a ’contraction’ strategy. The Gaussian-
type basis orbitals are formed from a linear combination of in-
dividually normalized primitive Gaussian functions 𝜑 𝑗(r), each
with identical center and angular quantum numbers, but different
exponents. This mathematical expression can be represented as

𝜙𝑖(r) =
𝐿∑
𝑗

𝑑 𝑗𝜑 𝑗(r) (A.1)

where

𝜑 𝑗(r) ≡ 𝜑(r; 𝛼, 𝑙 , 𝑚) = 𝑁𝑙𝑚(𝛼)𝑟 𝑙𝑌𝑙𝑚(�, 𝜙) exp
(
−𝛼 𝑗𝑟2) (A.2)

where 𝐿 is the length of the contraction, 𝛼 𝑗 are the contraction
exponents, 𝑑 𝑗 are contraction coefficients. The primitive Gaussians

* This explanation is guided by the lecture notes for the European Summer School
“Ab initio modeling in solid-state chemistry”, Torino, September 2000, by Mike
Towler
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are denoted in terms of real spherical harmonics including a nor-
malization constant. Through careful selection of these parameters,
one can achieve desired properties in the resulting basis functions,
such as reasonable cusp-like behavior at the nucleus, similar to
Slater functions or Hartree-Fock (HF) atomic orbitals. By doing this,
integrals involving such basis functions reduce to sums of integrals
involving the Gaussian primitives. Even though many primitive
integrals may need to be calculated for each basis function integral,
these integrals are much cheaper to calculate and there’s an overall
gain in performance.

Moreover, since these contracted basis functions are better at
describing the orbitals, this approach significantly reduces the
number of orbital coefficients in the wavefunction (i.e. we get
away with using fewer terms in Equation (5.3)). For instance, in a
STO-3G basis, where three Gaussian primitives create a contracted
function that resembles a Slater-type orbital, the size reduction
from the primitive basis is a factor of 3. This corresponds to a
nominal reduction factor of 81 (𝑁4) on the number of two-electron
integrals, which constitutes a substantial reduction. By employing
such strategies, the complexity of material simulations can be
significantly managed, allowing us to perform accurate predictions
without overwhelming computational resources.

The standard way to obtain the exponents and contraction coeffi-
cients is to perform Self-Consistent-Field calculations to determine
basis functions suitable for describing exact Hartree-Fock atomic
orbitals. Thus, an approximate atomic basis function is expanded
using a set of primitive Gaussians, which are advantageous for
computational reasons.

An interesting implication of this method is that although many
primitive Gaussian functions may be necessary to represent an
atomic orbital adequately, their relative weights remain largely un-
changed when atoms form molecules. This allows us to determine
these weights from prior calculations and the quantum chemistry
code will only adjust the overall scale factor for the contracted
Gaussian function in our extended calculations. In calculations
such as the ones performed in this work, we get our basis func-
tions for the atomic species from the literature and may use them
(almost) directly in our molecular calculations, after a preliminary
evaluation.
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This contraction scheme can be applied to solid-state physics. In
this context, we have a reference unit cell with a certain number of
non-equivalent atoms. Each of these atoms gets assigned a set of
Gaussian-Type Orbitals (GTOs), which are built from contractions
of Gaussian primitives. Let’s call the number of these GTOs 𝑝.

Next, we need to convert these GTOs into something that’s useful
for studying crystals. We do this by forming Gaussian-type Bloch
functions (GTBFs), which are also 𝑁𝑝 in number. Each GTBF is
constructed using a formula:

𝜙𝑖 ,k(r) =
∑

t
𝜑t
𝑎(r − r𝑎 − t) exp(𝑖kt) (A.3)

where the r𝑎 are the coordinates of the basis atom in the reference
zero cell with which 𝜑𝑎 is associated. In fact, there are no practical
differences in the form of the basis set input compared to the
molecular case, as the transformation of the one-electron basis
functions to their Bloch form is done internally after the definition
of the localized atomic functions. However, the exponents and
contraction coefficients in the two cases will generally be rather
different, and with some exceptions such as molecular crystals
and certain covalent systems, molecular basis sets are not directly
transferable to the study of crystalline solids.

To help with computational efficiency, computer programs group
atomic orbitals belonging to a given atom into shells. A shell
contains all atomic orbitals with the same 𝑛 and 𝑙 quantum numbers
- for example, all 𝑑 functions in a 3𝑑 shell. This arrangement helps us
to simplify the total charge density into shell charge distributions,
which is handy when we’re dealing with bi-electronic integrals
and long-range interactions.

This can be further reduced using one neat trick taken from Pople-
type basis sets. Some atomic orbitals may be grouped based on
their principal quantum number into shells, for example, a 2𝑠𝑝
shell. In such a shell, both 2𝑠 and 2𝑝 functions share the same set
of exponents 𝛼 𝑗 but have different contraction coefficients 𝑑 𝑗 . This
way, we cut down on the number of extra functions we need to
calculate electron integrals. Interestingly, 𝑠𝑝 shell structures can
save up to four times the CPU time compared to when 𝑠 and 𝑝 have
different exponents. However, this isn’t a one-size-fits-all solution.
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In some cases, the 𝑠𝑝 shells can limit the form of basis functions. In
computer codes such as CRYSTAL, one will define the parameters
grouped into such shells.

See, for example, how these definitions are used in the basis set
input used for fluorine:

fluorine - TZVP basis from 
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.5b03433/suppl_file/jp5b03433_si_001.pdf

9 8

0 0 6 2.0 1.0

    35479.100441 0.21545014888E-03

    5318.4728983 0.16700686527E-02

    1210.4810975 0.86733211476E-02

    342.85518140 0.35049933175E-01

    112.01943181 0.11165320133

    40.714740248 0.25988506647

0 0 2 2.0 1.0

    16.043087032 0.39422966880

    6.5321300268 0.24998238551

0 0 1 0.0 1.0

    1.5988881515 1.0000000000

0 0 1 0.0 1.0

    0.69433443154 1.0000000000

0 1 1 0.0 1.0

    0.28000000000 1.0 1.0

0 2 4 5.0 1.0

    89.322913079 0.63685999134E-02

    20.934929831 0.44303143530E-01

    6.5143926757 0.16867248708

    2.3716075957 0.36166346255

0 2 1 0.0 1.0

    0.87224572628 1.0000000000

0 3 1 0.0 1.0

    1.4000000000 1.0000000000

99 0

Atomic number

 Basis set type for this shell

Total charge of the shell

Scale factor 

Number of Gaussians for this shell

Parameters of primitive 
Gaussian functions

Shell type

Exponent of normalized 
primitive Gaussian

s contraction coefficient

p contraction coefficient

Basis Set Types:
0 - general, given as input
1 - STO-nG(Z:1-54)
2-Pople3(6)-21G

Shell Types:
0 - s
1 - sp
2-p
3-d
4-f

Number of shells

Close basis set block

N.B.: The true exponent is 
(exponent in contraction)*(scale factor)^2 

-



B
Computational details - CRYSTAL17

B.1 Gaussian Basis set

We used the following TZVP basis set in our DFT calculations [23],
here presented in CRYSTAL17 format.

9 8

0 0 6 2.0 1.0

35479.100441 0.21545014888E-03

5318.4728983 0.16700686527E-02

1210.4810975 0.86733211476E-02

342.85518140 0.35049933175E-01

112.01943181 0.11165320133

40.714740248 0.25988506647

0 0 2 2.0 1.0

16.043087032 0.39422966880

6.5321300268 0.24998238551

0 0 1 0.0 1.0

1.5988881515 1.0000000000

0 0 1 0.0 1.0

0.69433443154 1.0000000000

0 1 1 0.0 1.0

0.28000000000 1.0 1.0

0 2 4 5.0 1.0

89.322913079 0.63685999134E-02

20.934929831 0.44303143530E-01

6.5143926757 0.16867248708

2.3716075957 0.36166346255

0 2 1 0.0 1.0

0.87224572628 1.0000000000

0 3 1 0.0 1.0

1.4000000000 1.0000000000

99 0

The following Fluorine aug-cc-pVTZ-CDF [54, 55] basis set was used for
the SCF calculation used as starting point for the QMC calculations
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209 12

0 0 10 2.0 1.0

74.89951 -0.002468

46.74199 0.019169

29.16436 -0.081152

18.19700 0.213929

11.37305 -0.254988

3.96885 -0.064450

2.04155 0.236186

0.91037 0.462394

0.41030 0.379259

0.18153 0.090351

0 2 10 5.0 1.0

67.31505 -0.001110

42.08949 0.007863

26.31654 -0.034263

16.18931 0.078927

5.97723 0.112359

2.90851 0.189780

1.43846 0.276085

0.68046 0.314725

0.30498 0.240771

0.12804 0.074778

0 0 1 2.0 1.0

2.3857 1.0

0 0 1 0.0 1.0

0.3392 1.0

0 2 1 0.0 1.0

0.843 1.0

0 2 1 0.0 1.0

0.2591 1.0

0 3 1 0.0 1.0

3.1164 1.0

0 3 1 0.0 1.0

0.8721 1.0

0 4 1 0.0 1.0

1.9082 1.0

0 0 1 0.0 1.0

0.1598 1.0

0 3 1 0.0 1.0

0.2812 1.0

0 4 1 0.0 1.0

0.7007 1.0
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B.2 Convergence tests

Convergence tests were performed to evaluate the effect of the main
CRYSTAL settings for structure optimization on the 𝛼-F2 𝐶2/𝑐 crystal
structure, namely TOLDEG, TOLDEX, and MAXTRADIUS. TOLDEG
defines the tolerance for the root-mean-square of the energy gradient
in each self-consistent field cycle. The potential energy surface (PES) of
molecular crystals often exhibits a flat landscape, so very tight tolerances
on the gradient must be used. Otherwise, the algorithm may converge
prematurely. The tolerance on the maximum gradient component is 1.5
times the value of TOLDEG. TOLDEX defines the root-mean-square
threshold for atomic displacements for the optimization cycles. Just as
with TOLDEG, the maximum tolerance for an atomic displacement is
1.5 times the value of TOLDEX. Lastly, the MAXTRADIUS keyword
defines the maximum trust radius allowed in search of the minimum
in the potential energy surface. This parameter, whose default value is
4.0 in CRYSTAL17, is essential for optimizing the structure of molecular
crystals having a flat energy hypersurface. The trust region is the region
of the objective function (the potential energy, in our case) that will be
approximated by a simpler (usually quadratic) model. The step size of
the optimization algorithm (changes in lattice parameters and atomic
positions in our case) varies inversely proportional to the curvature (the
Hessian, in higher dimensions) at the current position on the energy
hypersurface. In flat regions with small curvature, the step size tends to
be large, and the algorithm may miss a minimum due to an oversized step.
MAXTRADIUS limits the size of the step in the minimization algorithm.
However, reducing MAXTRADIUS comes with the risk of a slower
convergence of the optimization algorithm. We tested the convergence of
the energy and the structural parameters after optimization by varying
TOLDEG (3×10−5, 10−5, and 5×10−6), TOLDEX (1.2×10−3, 5×10−5, and
10−5), and MAXTRADIUS (0.25, 0.1, and 0.05). Notice that even the
least strict conditions tested are already much more stringent than the
default values (3×10−4, 1.2×10−3, and 4.0 for TOLDEG, TOLDEX, and
MAXTRADIUS, respectively). In fact, we chose to be rigorous in this
aspect precisely because we are dealing with a molecular crystal with
a possibly flat energy hypersurface around the global minimum. The
optimization convergence tests were performed using the experimentally
determined structure for 𝛼-F2 relaxed using the default CRYSTAL17
optimization parameters as the starting point.

B.3 Structure optimization

We chose very strict convergence criteria for crystal structure optimization
of fluorine 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 phases, namely TOLDEG 0.00001, TOLDEX
0.0001, TOLDEE 11, and MAXTRADIUS 0.01. For the calculation of the
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static energies of the optimized structures, the chosen conditions were
XXLGRID, TOLDEE 12, TOLINTEG 10 10 10 20 40, and SHRINK 11 11 5.
These conditions were chosen to ensure an energy convergence within
1.5 µ𝐸h/atom, which is actually smaller than the expected accuracy of DFT
calculations. Furthermore, these same conditions were also employed in
obtaining the parameters of the Vinet equation of state for the 𝐶2/𝑐 and
𝐶𝑚𝑐𝑒 fluorine crystal structures.
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Additional figures and plots

C.1 Different choice of repeating unit for Lv et
al.

late

Figure C.1: Diagram showing a dif-
ferent choice of the repeating unit
for the lattice of 𝛼-F2. The original
choice (blue) results in larger 𝛽 and
𝑐 parameters. The alternative choice
(red) can be used to compare the re-
sults obtained in this work.
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C.2 Lattice parameters and atomic positions
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Figure C.2: Lattice parameters and atomic positions of the fluorine structures as a function of the pressure imposed in the
optimization. The constant pressure optimization minimizes the static enthalpy (no zero-point energy)
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Figure C.3: Contribution to total en-
ergy as a function of volume. Circles
are the DFT data calculated at the
PBE0+D3(ABC)/TZVP level of the-
ory. Dotted lines are a guide to the
eyes.



78 C Additional figures and plots

Figure C.4: Contributions to total
energy as a function of pressure.
Circles are the DFT data calculated
at the PBE0+D3(ABC)/TZVP level
of theory. Volume was converted to
pressure for each phase using their
respective fitted Birch-Murnahan
equation of state. Dotted lines are a
guide to the eyes.

0 1 2 3 4

Pressure (GPa)

2400

2200

2000

1800

1600

1400

1200

El
ec

tr
o

ni
c 

en
er

gy
 (

E h
/a

to
m

)

9.9700000000e7

DFT C2/c

DFT Cmce

(a) Electronic (potential) energy.

0 1 2 3 4

Pressure (GPa)

1650

1700

1750

1800

1850

1900

1950

2000

Ze
ro

 p
o

in
t 

en
er

gy
 (

E h
/a

to
m

)

DFT C2/c

DFT Cmce

(b) Zero point energy.

0 1 2 3 4

Pressure (GPa)

750

500

250

0

250

500

750

In
te

rn
al

 e
ne

rg
y 

(
E h

/a
to

m
)

9.9700000000e7

DFT C2/c

DFT Cmce

(c) Internal energy.



C.4 Phonon dispersion spectra 79

C.4 Phonon dispersion spectra
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Figure C.5: Evolution with pressure
of the phonon dispersion spectra of
the librational modes for the fluorine
𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 structures.
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Figure C.6: Evolution with pressure
of the phonon dispersion spectra of
the vibrational modes for the fluo-
rine 𝐶2/𝑐 and 𝐶𝑚𝑐𝑒 structures.
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C.5 Gradient of the energy along the unstable
mode of the 𝐶𝑚𝑐𝑒 at the Γ-point
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Figure C.7: Gradient of the poten-
tial energy with respect to displace-
ment along the eigenvector versus
displacement along the eigenvector
of theΓ-point mode of imaginary fre-
quency for the 𝐶𝑚𝑐𝑒 fluorine struc-
ture at zero and 0.75 GPa.
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