

CONFORME SOLICITAÇÃO DO AUTOR, ESTA PRODUÇÃO INTELECTUAL POSSUI RESTRIÇÃO DE ACESSO

UNIVERSIDADE DE CAXIAS DO SUL ÁREA DE CONHECIMENTO DE CIÊNCIAS DA VIDA INSTITUTO DE BIOTECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA

DESENVOLVIMENTO DE BIOFORMULAÇÕES CONTENDO ENDÓSPOROS DE Bacillus velezensis S26 PARA CONTROLE BIOLÓGICO DE DOENÇAS E PROMOÇÃO DO CRESCIMENTO VEGETAL

Alessandra Russi

Alessandra Russi

DESENVOLVIMENTO DE BIOFORMULAÇÕES CONTENDO ENDÓSPOROS DE Bacillus velezensis S26 PARA CONTROLE BIOLÓGICO DE DOENÇAS E PROMOÇÃO DO CRESCIMENTO VEGETAL

Tese apresentada ao Programa de Pós-graduação em Biotecnologia da Universidade de Caxias do Sul, como parte dos requisitos para a obtenção de grau de Doutora em Biotecnologia.

Orientadora: Profa. Dra. Joséli Schwambach

Co-orientadora: Profa. Dra. Camille Eichelberger Granada

Dados Internacionais de Catalogação na Publicação (CIP) Universidade de Caxias do Sul Sistema de Bibliotecas UCS - Processamento Técnico

R969d Russi, Alessandra

Desenvolvimento de bioformulações contendo endósporos de *Bacillus velezensis* S26 para controle biológico de doenças e promoção do crescimento vegetal [recurso eletrônico] / Alessandra Russi. – 2024. Dados eletrônicos.

Tese (Doutorado) - Universidade de Caxias do Sul, Programa de Pós-Graduação em Biotecnologia, 2024.

Orientação: Joséli Schwambach.

Coorientação: Camille Eichelberger Granada.

Modo de acesso: World Wide Web Disponível em: https://repositorio.ucs.br

1. Plantas - Doenças e pragas - Controle. 2. Agricultura sustentável. 3. Pragas - Controle biológico. 4. Antracnose. I. Schwambach, Joséli, orient. II. Granada, Camille Eichelberger, coorient. III. Título.

CDU 2. ed.: 632.93

Catalogação na fonte elaborada pela(o) bibliotecária(o) Carolina Machado Quadros - CRB 10/2236

Alessandra Russi

DESENVOLVIMENTO DE BIOFORMULAÇÕES CONTENDO ENDÓSPOROS DE Bacillus velezensis S26 PARA CONTROLE BIOLÓGICO DE DOENÇAS E PROMOÇÃO DO CRESCIMENTO VEGETAL

Tese apresentada ao Programa de Pós-graduação em Biotecnologia da Universidade de Caxias do Sul, como parte dos requisitos para a obtenção de grau de Doutora em Biotecnologia.

Aprovada em 28 de fevereiro de 2024.

Banca Examinadora

Dra. Joséli Schwambach						
Universidade de Caxias do Sul						
Dra. Marli Camassola						
Universidade de Caxias do Sul						
Dr. Eduardo Alves						
Universidade Federal de Lavras						
Dra. Marisa Vieira de Queiroz						
Universidade Federal de Viçosa						

CAXIAS DO SUL 2024

SUMÁRIO

59present	status	and	perspectives
9	· ·	nthracnose and soft rot	
4 RESULTADOS E DISO	CUSSÃO		56
REFERÊNCIAS	••••••		43
3.7.3 Reaproveitamen	nto de resíduos para	a elaboração de bioformul	ações 40
3.7.2 Bioformulações	s líquidas		39
3.7.1 Bioformulações	s secas		35
3.7 Bioformulações	•••••		33
3.6.2 Fatores envolvi	dos na esporulação	bacteriana	31
3.6.1 Esporulação em	n bactérias do gêner	o Bacillus	30
3.6 Bacillus spp. cor	no agentes de pror	noção de crescimento e l	oiocontrole 25
3.5 Solos contamina	dos com cobre e in	ndução de estresse em vi	deira 23
3.4 Pé-preto da vide	ira		22
3.3.2 Antracnose, flor	r-preta do morangu	eiro e podridão da uva ma	dura 20
3.3.1 Podridão cinzer	nta		19
3.3 Doenças pós-col	heita	•••••	19
3.2 Videira	•••••	•••••	17
3.1 Morangueiro	•••••	•••••	16
3 REVISÃO DA LITER	ATURA	•••••	16
2.2 Objetivos especí	ficos	•••••	14
2.1 Objetivo geral	•••••	•••••	14
2 OBJETIVOS	•••••	•••••	14
1 INTRODUÇÃO	•••••	••••••	11

of gray mold and anthracnose in postharvest strawberries	94
4.3 Suppression of Colletotrichum spp. on grape berries, vine leav	es, and plants
using Bacillus velezensis S26 endospores	124
4.4 Antagonistic potential of Bacillus velezensis S26 endospores	against gray
mold in grapevines	142
4.5 Innovative formulations enriched with Bacillus velezensis S2	26 endospores
using whey and composting leachate to enhance plant growth	and mitigate
strawberry diseases	167
4.6 Bacillus velezensis S26 - loaded biochar boosts plant grow	vth, alleviates
copper stress and suppresses black foot disease in SO4 vine roots	tock 191
5 DISCUSSÃO GERAL	219
6 CONCLUSÕES	226
7 PERSPECTIVAS	228
REFERÊNCIAS	229

LISTA DE SIGLAS

ADP Ácido dipicolínico

ANOVA Analysis of variance

BAP 6-benzyl aminopurine

BC Bacterial cellls

BCA Biological control agent

BE Bacterial endospores

BF Bioformulation

BOD Biochemical oxygen demand

CB Culture broth

CBB Composted bagasse biochar

CFS *Cell-free supernatant*CFU *Colony-forming unit*

CMC Carboxymethylcellulose

COD Chemical oxygen demand

CTC Capacidade de troca catiônica

DBO Demanda bioquímica de oxigênio

DI Disease incidence

DQO Demanda química de oxigênio

ERO Espécie reativa de oxigênio

DS Disease severity

DSI Disease severity index

END Endósporos

FAO Food and Agriculture Organization

FBB Fresh bagasse biochar

FI Fresh inoculant

FM Fresh mass

FS Foliar spraying

GTP Trifosfato de guanosina

LB Luria-Bertani

MGI Mycelial growth rate

MS Murashige and Skoog

NAA α -naphthalene acetic acid

NRPS Nonribosomal peptide synthetases

ODS Objetivo do Desenvolvimento Sustentável

OIV International Organisation of Vine and Wine

PDA Potato dextrose agar

PGPB Plant growth-promoting bacteria

PI Percentage of inhibition

PKS Polyketide synthetases

PM Plant mortality

PNRS Política Nacional de Resíduos Sólidos

SASP Small acid soluble proteins

SD Soil drenching

SI Stored inoculant

TSS Total soluble solids

TTA Total titratable acidity

UN United Nations

VOC Volatile organic compounds

WP Wettable powder

YPG Yeast extract peptone and glucose

LISTA DE FIGURAS

Figura 1. Efeito do excesso e da deficiência de cobre em plantas	24
Figura 2. Etapas da esporulação em <i>Bacillus</i> spp	31

LISTA DE TABELAS

Tabela	1.	Comparativo	entre	os	fungos	Colletotrichum	gloeosporio	oides	e	<i>C</i> .
acutatun	n					•••••				21
Tabela	2. F	Principais comp	ostos	antin	nicrobiano	os sintetizados p	or <i>Bacillus</i>	spp.	e s	suas
respectiv	as p	ropriedades								27
Tabela 3. Principais classes de aditivos e exemplos								34		
Tabela 4	. Pri	ncipais técnicas	empreg	gadas	na termo	decomposição da	biomassa			38

RESUMO

Os bioinsumos têm ganhado destaque em resposta aos efeitos prejudiciais ocasionados pelo uso excessivo de fertilizantes químicos e pesticidas ao meio ambiente e à saúde humana. Nesse contexto, o gênero Bacillus é constituído por bactérias Gram-positivas, formadoras de endósporos e com ação antagonística contra vários fitopatógenos. Essas bactérias também atuam estimulando o desenvolvimento vegetal e promovendo a indução de mecanismos de resistência em plantas. Consequentemente, o emprego desses micro-organismos, na forma de endósporos, pode contribuir para prolongar a estabilidade e a vida de prateleira de bioformulações. O presente estudo teve como objetivo determinar o potencial inibitório de suspensões de endósporos de Bacillus velezensis S26 no controle da podridão cinzenta causada por *Botrytis* spp., da antracnose ocasionada por *Colletotrichum* spp. e do pé-preto, cujo agente causal inclui o fungo Dactylonectria macrodidyma. Somado a isso, buscou-se verificar a ação de B. velezensis S26 na promoção do crescimento em morangueiros e videiras, bem como seu emprego na elaboração de formulações líquidas e secas usando subprodutos agroindustriais. Inicialmente, os ensaios foram conduzidos visando promover a esporulação bacteriana, em frascos de cultivo mantidos sob agitação. Posteriormente, avaliou-se o potencial antagonístico das suspensões de endósporos B. velezensis S26 contra isolados de Botrytis spp. e Colletotrichum spp., tanto in vitro quanto in vivo. Os ensaios in vivo foram realizados em frutos e plantas de videira e morangueiro sob condições ambientais controladas. Em seguida, foram elaboradas quatro bioformulações constituídas por lixiviado da compostagem de bagaço de uva e soro de leite, isoladamente ou em combinação. A eficácia dessas formulações foi determinada tanto em condições controladas quanto em uma estufa comercial de morangos. De forma similar, foi desenvolvida uma formulação seca a partir de biochares provenientes da pirólise do bagaço de uva fresco e do bagaço de uva compostado. O potencial de promoção do crescimento dessas formulações foi testado no porta-enxerto de videira SO4 (Vitis berlandieri × V. riparia), cultivado em substrato convencional e substrato contendo altos níveis de cobre. Também, examinou-se o efeito desses biochares associados com endósporos B. velezensis S26 na supressão do pé-preto da videira. Os resultados demonstraram B. velezensis S26 apresenta capacidade de controlar, de forma eficaz, a antracnose e a podridão cinzenta em morangueiros e videiras. Essa atividade inibitória foi mantida após seis meses de armazenamento. Além disso, os ensaios em frascos de cultivo e biorreatores possibilitaram induzir a esporulação de B. velezensis S26, utilizando lixiviado de compostagem e soro como meio de cultura. O emprego dessas formulações líquidas contribuiu para a promoção do crescimento de morangueiros micropropagados, bem como para o biocontrole de podridões de frutos em uma estufa comercial de morangos, com um desempenho similar ao bioproduto Duravel WP®. Finalmente, os tratamentos utilizando biochar enriquecido com endósporos de B. velezensis S26 contribuíram para minimizar o estresse ocasionado pelo excesso de cobre no solo, aumentar a biomassa de plantas de SO4 micropropagadas e controlar o pé-preto da videira. Portanto, B. velezensis S26 é um agente promissor no controle biológico da antracnose, podridão cinzenta e pé-preto em morangueiros e videiras, não apenas reduzindo a incidência e severidade dessas doenças, mas também, estimulando o crescimento das plantas. Dessa forma, a incorporação de endósporos de B. velezensis S26 em bioformulações líquidas e biochares possibilita a preservação tanto da viabilidade celular durante o armazenamento quanto da capacidade de supressão de doenças fúngicas e de estímulo ao desenvolvimento vegetal, contribuindo para uma agricultura sustentável e agregando valor a subprodutos agroindustriais.

Palavras-chave: Antracnose, bioformulação, esporulação, podridão cinzenta, pé-preto, promoção do crescimento.

ABSTRACT

The bioinputs has gained prominence in response to the harmful effects caused by synthetic fertilizers and pesticides on the environment and human health. The genus *Bacillus* consists of Gram-positive, endospore-forming bacteria with antagonistic potential against various phytopathogens. These bacteria also stimulate plant development and induce resistance mechanisms in plants. Consequently, the use of endospores can contribute to extending the shelf life and stability of bioformulations. This study aimed to determine the inhibitory potential of Bacillus velezensis S26 endospores suspensions in controlling gray mold caused by Botrytis spp., anthracnose caused by Colletotrichum spp., and black foot rot, with the causal agent being the fungus Dactylonectria macrodidyma. Additionally, the study sought to investigate the action of B. velezensis S26 endospores suspensions in promoting the growth of strawberries and grapevines and to develop liquid and dry formulations using agro-industrial by-products. Initially, trials were conducted to induce and optimize bacterial sporulation in shaking-flasks. Subsequently, the antagonistic potential of B. velezensis S26 endospore suspensions against isolates of *Botrytis* spp. and *Colletotrichum* spp. was evaluated both in vitro and in vivo. In vivo trials were conducted on fruits and plants of grapevine and strawberry under controlled environmental conditions. Four bioformulations were then developed, consisting of leachate from grape marc composting and whey, either individually or in combination. The effectiveness of these formulations was determined under controlled conditions and in a commercial strawberry greenhouse. Similarly, a dry formulation was developed from two biochars derived from the pyrolysis of fresh grape pomace and previously composted grape pomace. The growthpromoting potential of these formulations was tested on the grapevine rootstock SO4 (Vitis berlandieri × V. riparia), cultivated in conventional substrate and copper-treated substrate. The effect of biochars associated with B. velezensis S26 endospores on black foot rot suppression was also examined. The results demonstrated that B. velezensis S26 endospores can effectively control anthracnose and gray mold in strawberries and grapevines. This inhibitory capacity was maintained even after six months of storage. Furthermore, cultivation in shaking-flasks and bioreactors led to B. velezensis S26 sporulation using compost leachate and whey as culture media. The use of these culture suspensions as liquid formulations provided performance similar to the commercial bioproduct Duravel WP® in a commercial strawberry greenhouse and promoted the growth of micropropagated strawberry plants. Finally, treatments using biochar enriched with B. velezensis S26 endospores contributed to minimize copper-induced stress, increase the biomass of micropropagated SO4 plants, and control grapevine black foot rot. Therefore, B. velezensis S26 emerges as a promising agent in the biocontrol of anthracnose, gray mold, and black foot rot, not only reducing the incidence and severity of these diseases but also stimulating the growth of these plants. As a result, the incorporation of B. velezensis S26 endospores into liquid bioformulations and biochars allows for the preservation of both cellular viability during storage and the ability to suppress fungal diseases and stimulate plant development, contributing to sustainable agriculture and adding value to agro-industrial waste and by-products.

Keywords: Anthracnose, bioformulation, black foot, sporulation, gray mold, growth promotion.