

CONFORME SOLICITAÇÃO DO AUTOR, ESTA PRODUÇÃO INTELECTUAL POSSUI RESTRIÇÃO DE ACESSO

CAXIAS DO SUL 2024

UNIVERSIDADE DE CAXIAS DO SUL ÁREA DO CONHECIMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE

PROCESSOS E TECNOLOGIAS

AVALIAÇÃO DE NANOPLAQUETAS DE GRAFENO MODIFICADAS PARA INCORPORAÇÃO EM UM REVESTIMENTO PÓ BASE EPÓXI

Marcos Vinícius Marocco

Orientador: Prof. Dr. Diego Piazza

Marcos Vinícius Marocco

AVALIAÇÃO DE NANOPLAQUETAS DE GRAFENO MODIFICADAS PARA INCORPORAÇÃO EM UM REVESTIMENTO PÓ BASE EPÓXI

Dissertação realizada no Programa de Pós-Graduação em Engenharia de Processos e Tecnologias da Universidade de Caxias do Sul, visando à obtenção de grau de mestre em Engenharia de Processos e Tecnologias, orientada pelo Prof. Dr. Diego Piazza.

Caxias do Sul, 2024

Dados Internacionais de Catalogação na Publicação (CIP) Universidade de Caxias do Sul Sistema de Bibliotecas UCS - Processamento Técnico

M354a Marocco, Marcos Vinícius

Avaliação de nanoplaquetas de grafeno modificadas para incorporação em um revestimento pó base epóxi [recurso eletrônico] / Marcos Vinícius Marocco. – 2024.

Dados eletrônicos.

Dissertação (Mestrado) - Universidade de Caxias do Sul, Programa de Pós-Graduação em Engenharia de Processos e Tecnologias, 2024. Orientação: Diego Piazza. Modo de acesso: World Wide Web Disponível em: https://repositorio.ucs.br

1. Nanotecnologia. 2. Revestimentos. 3. Materiais - Testes. I. Piazza, Diego, orient. II. Título.

CDU 2. ed.: 620.3

Catalogação na fonte elaborada pela(o) bibliotecária(o) Ana Guimarães Pereira - CRB 10/1460

Marcos Vinícius Marocco

AVALIAÇÃO DE NANOPLAQUETAS DE GRAFENO MODIFICADAS PARA INCORPORAÇÃO EM UM REVESTIMENTO PÓ BASE EPÓXI

Dissertação de Mestrado submetida à Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em Engenharia de Processos e Tecnologias da Universidade de Caxias do Sul, como parte dos requisitos necessários para a obtenção do título de Mestre em Engenharia de Processos e Tecnologias, Área de Concentração: Desenvolvimento de Processos e Produtos Industriais

DISSERTAÇÃO APROVADA EM 09 DE DEZEMBRO DE 2024

Orientador: Prof. Dr. Diego Piazza (UCS)

Banca Examinadora:

Profa. Dra. Lisete Cristine Scienza Universidade Federal do Rio Grande do Sul (UFRGS)

Prof. Dr. Matheus Poletto Universidade de Caxias do Sul (UCS)

Profa. Dra. Rosmary Nichele Brandalise Universidade de Caxias do Sul (UCS)

"As grandes ideias surgem da observação dos pequenos detalhes."

(Augusto Cury)

AGRADECIMENTOS

Agradeço primeiramente a Deus, pelas dádivas e bençãos em minha vida, por proporcionar a realização dessa importante etapa.

À minha esposa, Jéssica Moreira Machado Marocco, que me apoiou e me incentivou durante a realização de todas as etapas do mestrado.

Aos meus pais Carmen Lúcia Ventorin Marocco e Edy Marocco, por estarem sempre ao meu lado em todas as minhas decisões.

Ao Prof. Dr. Diego Piazza, por sua orientação, ensinamentos e explicações durante as etapas desse mestrado.

Aos colegas Aline Zanchet, Daniele Perondi, Giovani Bruno Bérti, Gustavo Onzi Caberlon, Francisco Lanferdini Serafini, e Valéria Grabas Pellizzoni, pelo companheirismo, auxílio e apoio no desenvolvimento desse mestrado.

A todos os profissionais, professores e colaboradores que, de alguma forma tiveram sua participação, direta ou indiretamente para o andamento desse trabalho.

À empresa Superlack, pela doação de parte dos materiais e disponibilidade de sua infraestrutura para o processamento do material de estudo desse mestrado.

À unidade UCSGRAPHENE, pela disponibilização da bolsa de estudo, apoio técnico, conhecimento e por proporcionar o necessário para o desenvolvimento desse trabalho.

À Universidade de Caxias do Sul (UCS) e ao Programa de Pós-graduação em Engenharia de Processos e Tecnologias – PGEPROTEC.

LISTA DE FIGURAS

Figura 1. Reação de síntese de estrutura epoxídica de menor massa molar com epicloridrina,
éter diglicidil de bisfenol-A (DGEBA) (FAZENDA, 2009)25
Figura 2. Reações de síntese da resina epóxi - Bisfenol A (B.P.A) (FAZENDA, 2009)25
Figura 3. Estrutura química típica das diciandiamidas não modificadas (FAZENDA et al.,
2009)27
Figura 4. Estrutura química do agente de cura diciandiamida modificada, 1-o-tolilbiguanida
(SIGMA)27
Figura 5. Estrutura química do agente de superfície benzoína (SIGMA ALDRICH, 2023)28
Figura 6. Representação esquemática dos diferentes alótropos do carbono (Adaptado de
TONELLI et al., 2015)
Figura 7. Derivados do grafeno, onde as esferas cinzas representam o átomo de carbono (C) e
as esferas vermelhas representam grupos funcionais (-OH, C-O-C, COOH).
(Adaptado de NASEER et al., 2019)
Figura 8. Fluxograma das etapas de obtenção, aplicação e caracterização dos revestimentos
(O Autor, 2024)
Figura 9. Processo de pré-mistura dos componentes do revestimento: a) componentes do
revestimento, b) moinho de bolas, c) gira-jarros, d) componentes homogeneizados
(O Autor, 2024)
Figura 10. Processo de adição das NPGs: a) inserção das NPGs na pé-mistura, b)
homogeneização final de todos os componentes sólidos (O Autor, 2024)44
Figura 11. Processo de extrusão dos revestimentos: a) extrusora duplarrosca de matriz aberta,
b) calandra automática de nivelamento, c) chips obtidos por nivelamento da
calandra (O Autor, 2024)44
Figura 12. Processo de moagem e peneiramento dos revestimentos: a) moinho de facas de
bancada, b) agitador de peneiras, c) REP-0, d) REP-0.1NPG, e) REP-0.1NPGA, f)
REP-0.1NPG _B , g) REP-0.1NPG _C (O Autor, 2024)
Figura 13. Fluxograma das etapas do processo de fosfatização (O Autor, 2024)46
Figura 14. Classificação de aderência conforme ASTM D335951
Figura 17. Classificação de dureza conforme norma D3363-05E2
Figura 18. Sistema de medida da condutividade térmica no qual P1 e P2 referem-se a placa

	quente e fria, F ao fluxímetro e CP ao corpo de prova53
Figura 19.	Ilustração da medida do ângulo de contato através do software Surftens 3.0 54
Figura 20.	Análise termogravimétrica das NPG com e sem modificações (O Autor, 2024) 56
Figura 21.	Difratogramas das NPG com e sem modificações (O Autor, 2024)59
Figura 22.	Microscopia eletrônica de varredura das NPG com e sem modificações: a) NPG,
	b) NPG _A , c) NPG _B , d) NPG _C (O Autor, 2024)61
Figura 23.	Espectros de FTIR das NPG com e sem modificações (O Autor, 2024)63
Figura 24.	Difratograma de raios-X dos revestimentos em pó com e sem NPG (O Autor,
	2024)
Figura 25.	Curva termogravimétrica dos revestimentos em pó com e sem NPG (O Autor,
	2024)
Figura 26.	Curva termogravimétrica dos revestimentos em pó com e sem NPG (O Autor,
	2024)
Figura 27.	Curva de DSC dos revestimentos em pó com e sem NPG (O Autor, 2024)70
Figura 28.	Micrografias dos revestimentos em pó base epóxi curados em Teflon [®] . a) TREP-0;
	b) TREP-0.1NPG; c) TREP-0.2NPG; d) TREP-0.1NPG _A ; e) TREP-0.2NPG _A ; f)
	TREP-0.1NPG _B ; g) TREP-0.2NPG _B ; h) TREP-0.1NPG _C ; i) TREP-0.2NPG _C (O
	Autor, 2024)74
Figura 29.	Módulo de armazenamento das amostras contendo 0.1% (m/m) de NPG com e
	sem modificação, curadas em Teflon® (O Autor, 2024)77
Figura 30.	Módulo de armazenamento das amostras contendo 0.2% (m/m) de NPG com e
	sem modificação, curadas em Teflon® (O Autor, 2024)77
Figura 31.	Tangente delta para amostras contendo 0.1% (m/m) de NPG com e sem
	modificação, curadas em Teflon [®] (O Autor, 2024)79
Figura 32.	Tangente delta para amostras contendo 0.2% (m/m) de NPG com e sem
	modificação, curadas em Teflon [®] (O Autor, 2024)79
Figura 33.	Revestimentos de tinta em pó base epóxi. a) CREP-0; b) CREP-0.1NPG; c)
	CREP-0.2NPG; d) CREP-0.1NPG _A ; e) CREP-0.2NPG _A ; f) CREP-0.1NPG _B ; g)
	$CREP-0.2NPG_B \ ;h) \ CREP-0.1NPG_C; \ i) \ CREP-0.2NPG_C \ (O \ Autor, \ 2024). \ 82$
Figura 34.	Resistência ao impacto dos revestimentos em pó base epóxi. a) CREP-0; b)
	CREP-0.1NPG; c) CREP-0.2NPG; d) CREP-0.1NPG _A ; e) CREP-0.2NPG _A ; f)
	CREP-0.1NPG _B ; g) CREP-0.2NPG _B ;h) CREP-0.1NPG _C ; i) CREP-0.2NPG _C (O
	Autor, 2024)

- Figura 37. Aspecto da amostra CREP-0 após diferentes tempos de exposição à névoa salina:
 (a) 0 horas; (b) após 24 horas; (c) após 72 horas; (d) após 168 horas; (e) após 360 horas; (f) após 504 horas; (g) após 768 horas e (h) após 1.008 horas (O Autor, 2024).

- Figura 43. Aspecto da amostra CREP-0.2NPG_B após diferentes tempos de exposição à névoa salina: (a) 0 horas; (b) após 24 horas; (c) após 72 horas; (d) após 168 horas; (e)

	após 360 horas; (f) após 504 horas; (g) após 768 horas e (h) após 1.008 horas (O
	Autor, 2024)
Figura 44.	Aspecto da amostra CREP-0.1NPG $_{C}$ após diferentes tempos de exposição à névoa
	salina: (a) 0 horas; (b) após 24 horas; (c) após 72 horas; (d) após 168 horas; (e)
	após 360 horas; (f) após 504 horas; (g) após 768 horas e (h) após 1.008 horas (O
	Autor, 2024)
Figura 45.	Aspecto da amostra CREP-0.2NPG _C após diferentes tempos de exposição à névoa
	salina: (a) 0 horas; (b) após 24 horas; (c) após 72 horas; (d) após 168 horas; (e)
	após 360 horas; (f) após 504 horas; (g) após 768 horas e (h) após 1.008 horas (O
	Autor, 2024)
Figura 46.	Ilustração dos pontos esverdeados nas composições (O Autor, 2024)
Figura 47.	Migração subcutânea para as amostras desenvolvidas. (a) CREP-0; (b) CREP-
	0.1NPG; (c) CREP-0.2NPG; (d) CREP-0.1NPG _A ; (e) CREP-0.2NPG _A ; (f) CREP-
	0.1NPG _B ; (g) CREP-0.2NPG _B ; (h) CREP-0.1NPG _C e (i) CREP-0.2NPG _C (O
	Autor, 2024)

LISTA DE TABELAS

Tabela 1. Formulações dos revestimentos em pó base epóxi com incorporação de NPG (O
Autor, 2024)
Tabela 2. Identificação adotada para as amostras de revestimento em pó (O Autor, 2024)42
Tabela 3. Identificação adotada para as amostras aplicadas em Teflon [®] (O Autor, 2024)42
Tabela 4. Identificação adotada para as amostras aplicadas em substrato metálico tratado (O
Autor, 2024)
Tabela 5. Área superficial específica, volume total de poros e volume de microporos das
NPG com e sem modificações (O Autor, 2024) *Tamanho do poro: 1-2 nm58
Tabela 6. Composição química das NPG com e sem modificações (O Autor, 2024)62
Tabela 7. Dados de TGA na degradação acentuada dos revestimentos (O Autor, 2024)69
Tabela 8. Tempo de gel dos revestimentos em pó com e sem NPG (O Autor, 2024)71
Tabela 9. Análise elementar semi-quantitativa por EDS do revestimento em pó base epóxi,
curados em Teflon [®] , com e sem NPG (O Autor, 2024)75
Tabela 10. Valores médios de espessura dos revestimentos com e sem NPG (O Autor, 2024).
Tabela 11. Classificação dos revestimentos em pó base epóxi com e sem NPG (O Autor,
2024)
Tabela 12. Classificação de dureza à lápis dos revestimentos em pó base epóxi com e sem
NPG (O Autor, 2024)
Tabela 13. Condutividade térmicas do revestimento em pó base epóxi com e sem NPG (O
Autor, 2024)
Tabela 14. Ângulo de contato do revestimento com e sem NPG (O Autor, 2024). 91
Tabela 15. Valores médios de brilho U.B dos revestimentos em pós base epóxi com e sem
NPG (O Autor,2024)
Tabela 16. Grau de empolamento e desplacamento dos revestimentos em pó base epóxi com e
sem NPG (O Autor, 2024)

LISTA DE QUADROS

SIGLAS, TERMOS E ABREVIAÇÕES

1LG	Monolayer Graphene		
2LG	Two-layer Graphene		
APTES	3-Aminopropiltrietoxisilano		
ASTM	Americam Society for Testing and Materials		
CADEQ	Central Analítica do Departamento de Engenharia Química		
CREP	Revestimento em pó base epóxi curado em substrato metálico		
	fosfatizado		
DMA	Análise Dinâmico-Mecânica		
DRX	Difração de raios-X		
DSC	Calorimetria exploratória diferencial		
EDS	Espectroscopia por Energia Dispersiva		
FLG	Few-layer Graphene		
FTIR	Espectroscopia no infravermelho por transformada de Fourier		
GNP	Graphene Nanoplatelets		
GO	Graphene Oxide		
GPTES	glicidoxipropiltrietoxisilano		
LAMEC	Laboratório de ensaios mecânicos		
LCMIC	Laboratório Central de Microscopia Professor Israel Baumvol		
LCOR	Laboratório de Corrosão e Proteção Superficial		
LAMAT	Laboratório de Materiais		
LAMEM	Laboratório de Membranas de Materiais		
MEV-FEG	Microscopia eletrônica de varredura com emissão de campo		
NPG	Nanoplaqueta de grafeno		
NPGA	Nanoplaquetas de grafeno modificadas com grupos que contém		
	grupamentos oxigenados		
NPG _B	Nanoplaquetas de grafeno modificadas com grupos que contém		
	grupamentos oxigenados + modificação com silano APTES		
NPG _C	Nanoplaquetas de grafeno modificadas com grupos que contém		
	grupamentos oxigenados + modificação com silano APTES +		
	modificação com CeO ₂		

PGEPROTEC	Programa de Pós-graduação em Engenharia de Processos e Tecnologias
REP	Revestimento em pó base epóxi
rGO	Reduced Graphene Oxide
TGA	Análise termogravimétrica
TREP	Revestimento em pó base epóxi curado em Teflon®
U.B.	Unidade de Brilho
UCS	Universidade de Caxias do Sul
UFSM	Universidade Federal de Santa Maria

1	INTRODUÇÃO	19
2	OBJETIVO GERAL	21
2.1	OBJETIVOS ESPECÍFICOS	21
3	REFERENCIAL TEÓRICO	22
3.1	REVESTIMENTOS POLIMÉRICOS	22
3.1.1	Revestimento em Pó	22
3.1.2	Resina Epoxídica	24
3.1.3	Revestimento em Pó Base Epóxi	26
3.2	NANOTECNOLOGIA	28
3.2.1	Grafeno e/ou Seus Derivados	29
3.3	MODIFICAÇÃO DA SUPERFÍCIE DO GRAFENO E/OU SEUS DERIVADOS	31
3.3.1	Modificação da Superfície do Grafeno e/ou Seus Derivados com Silanos.	31
3.3.2	Modificação da Superfície do Grafeno e/ou Seus Derivados com Cério	33
3.4	REVESTIMENTOS EM PÓ BASE EPÓXI NANOESTRUTURADOS	34
4	MATERIAIS E MÉTODOS	36
4.1	MATERIAIS	36
4.2	MÉTODOS	37
4.2.1	Preparação, Aplicação e Caracterização dos Revestimentos em Pó Base Epóxi	37
4.2.2	Obtenção das NPG Pré-tratadas	38
4.2.3	Modificação das NPG com Silano	39
4.2.4	Modificação das NPG com Dióxido de Cério	40
4.2.5	Identificação e Formulação das Amostras	40
4.2.6	Processamento dos Revestimentos em Pó Base Epóxi	43
4.2.7	Preparação dos Substratos Metálicos	45
4.2.8	Aplicação dos Revestimentos em Pó aos Substratos Metálicos Tratados	46
4.2.9	Caracterização das NPG com e sem Modificações	46
4.2.9.1	Análise Termogravimétrica	47
4.2.9.2	Área Superficial Específica	47
4.2.9.3	Difração de Raios-X	47
4.2.9.4	Microscopia Eletrônica de Varredura por Emissão de Campo e Espectroscopia por Dispersão de Energia	48
4.2.9.5	Espectroscopia no Infravermelho por Transformada de Fourier	48
4.2.10	Revestimento em Pó com e sem NPG	48

SUMÁRIO

4.2.10.1	Difração de Raio-X	48
4.2.10.2	Análise Termogravimétrica	49
4.2.10.3	Calorimetria Exploratória Diferencial	49
4.2.10.4	Tempo de Gel	49
4.2.11	Avaliação do Revestimento Aplicado em Teflon [®]	50
4.2.11.1	Microscopia Eletrônica de Varredura por Emissão de Campo e Espectroso por Dispersão de Energia	opia 50
4.2.11.2	Análise Dinâmico-Mecânica	50
4.2.12	Revestimento Aplicado em Substrato Metálico com e sem NPG	50
4.2.12.1	Espessura	50
4.2.12.2	Aderência	51
4.2.12.3	Dureza à Lápis	52
4.2.12.4	Resistência ao Impacto	52
4.2.12.5	Flexibilidade	53
4.2.12.6	Condutividade Térmica	53
4.2.12.7	Ângulo de Contato	54
4.2.12.8	Brilho	55
4.2.12.9	Névoa Salina	55
5	RESULTADOS E DISCUSSÕES	56
5.1	NPG COM E SEM MODIFICAÇÕES	56
5.1.1	Análise Termogravimétrica	56
5.1.2	Análise de Área Superficial Específica	57
5.1.3	Análise de Difração de Raios X	58
5.1.4	Análise de Microscopia Eletrônica de Varredura por Emissão de Camp Espectroscopia por Energia Dispersiva	o e 60
5.1.5	Espectroscopia no Infravermelho por Transformada de Fourier (FTIR)63
5.2	REVESTIMENTO EM PÓ COM E SEM NPG	65
5.2.1	Difração de Raios-X	65
5 7 7		
3.2.2	Análise Termogravimétrica	66
5.2.3	Análise Termogravimétrica Calorimetria Exploratória Diferencial	66 69
5.2.2 5.2.3 5.2.4	Análise Termogravimétrica Calorimetria Exploratória Diferencial Tempo de Gel	66 69 71
5.2.3 5.2.4 5.3	Análise Termogravimétrica Calorimetria Exploratória Diferencial Tempo de Gel REVESTIMENTOS APLICADOS EM TEFLON® COM E SEM NPG	66 69 71 72
5.2.3 5.2.4 5.3 5.3.1.1	Análise Termogravimétrica Calorimetria Exploratória Diferencial Tempo de Gel REVESTIMENTOS APLICADOS EM TEFLON® COM E SEM NPG Microscopia Eletrônica de Varredura por Emissão de Campo e Espectroscopia por Dispersão de Energia	66 69 71 72
5.2.2 5.2.3 5.2.4 5.3 5.3.1.1 5.3.2	Análise Termogravimétrica Calorimetria Exploratória Diferencial Tempo de Gel REVESTIMENTOS APLICADOS EM TEFLON® COM E SEM NPG Microscopia Eletrônica de Varredura por Emissão de Campo e Espectroscopia por Dispersão de Energia Análise Dinâmico Mecânica	66 71 72 72 72

	SEM NPG	81
5.4.1	Espessura	81
5.4.2	Aderência	81
5.4.3	Dureza à Lápis	83
5.4.4	Resistência ao Impacto	85
5.4.5	Flexibilidade	
5.4.6	Condutividade Térmica	
5.4.7	Ângulo de Contato	90
5.4.8	Brilho	
5.4.9	Névoa Salina	93
6	CONCLUSÃO	
REFER	RÊNCIAS	

RESUMO

A nanotecnologia tem promovido avanços significativos no desenvolvimento de revestimentos nanoestruturados, substituindo cargas convencionais por nanocargas, como nanoplaquetas de grafeno (NPG). Dependendo das características e da forma como são incorporadas, as NPG podem oferecer condutividade térmica e elétrica, resistência mecânica e propriedades de barreira eficazes contra corrosão. No contexto de revestimentos poliméricos, especialmente base epóxi, a incorporação de NPG pode aumentar a resistência química, dificultar a difusão de oxigênio e íons agressivos, melhorar a durabilidade e a estabilidade térmica dos revestimentos. Para aumentar a compatibilidade entre a nanocarga e a matriz polimérica, a modificação das NPG com grupos oxigenados e silano, pode potencializar as propriedades de barreira e a estabilidade térmica dos revestimentos. Neste trabalho, o processamento das NPG envolveu a pré-homogeneização dos materiais, extrusão, moagem e peneiramento dos revestimentos. As NPG foram incorporadas nas formulações dos revestimentos em diferentes concentrações (0,1 e 0,2% m/m), seguida de aplicação em substratos metálicos tratados com fosfato de zinco. Na determinação da área superficial específica, as NPG apresentaram os seguintes valores: NPG (sem modificação) com 26,86 m²/g; NPG_A (modificada com grupos oxigenados) com 359,00 m²/g; NPG_B (modificada com silano) com 143,27 m²/g; e NPG_C (modificada com dióxido de cério) com 66,29 m²/g. Esses resultados demonstram que as modificações nas NPG aumentam a área superficial específica, propriedade potencial para melhorar a dispersão e a interação com a matriz epóxi, influenciando positivamente as propriedades dos revestimentos. Os resultados demonstraram que as amostras contendo NPG (CREP-0.1NPG, CREP-0.2NPG) e suas variações modificadas, atingiram a classificação de aderência 5B, com 0% de área removida, indicando uma melhor propriedade de adesão em comparação ao revestimento sem NPG (CREP-0). A análise de condutividade térmica apresentou que a amostra CREP-0.2NPG_B, com maior concentração de NPG_B, apresentou um aumento de 45% na condutividade térmica, comparado com a amostra CREP-0. Na avaliação da flexibilidade, as amostras contendo NPG resistiram à deformação sem desplacamento, demonstrando que a presença de NPG mantém a aderência do revestimento sob condições de flexão. A análise termogravimétrica revelou que a presença de NPG modificadas aumentou a estabilidade térmica dos compósitos, sendo que a amostra contendo NPG_C apresentou a menor perda de massa em temperaturas elevadas. Para validar os revestimentos em função das modificações nas NPG, foram realizadas análises térmicas, químicas, físicas, morfológicas e mecânicas. Os resultados indicam que as NPG modificadas têm potencial de aprimorar os revestimentos em pó base epóxi, oferecendo uma alternativa para as aplicações industriais que exigem vantagens em termos de desempenho dos revestimentos.

Palavras-chave: epóxi, nanoplaquetas de grafeno, dióxido de cério, nanoplaquetas de grafeno modificadas, revestimentos nanoestruturados em pó.

ABSTRACT

Nanotechnology has promoted significant advances in the development of nanostructured coatings, replacing conventional fillers with nanofillers, such as graphene nanoplatelets (GNP). Depending on the characteristics and how they are incorporated, GNP can offer thermal and electrical conductivity, mechanical strength, and effective barrier properties against corrosion. In the context of polymeric coatings, especially epoxy-based, the incorporation of GNP can increase chemical resistance, hinder the diffusion of oxygen and aggressive ions, improve the durability and thermal stability of coatings. To increase the compatibility between the nanofillers and the polymer matrix, the modification of GNP with oxygenated groups and silane can enhance the barrier properties and thermal stability of coatings. In this work, the processing of the GNP involved the pre-homogenization of the materials, extrusion, grinding and screening of the coatings. The GNP were incorporated into the coatings formulations at different concentrations (0.1 and 0.2% w/w), followed by application on metal substrates treated with zinc phosphate. In the determination of the specific surface area, the GNP presented the following values: GNP (without modification) with 26.86 m²/g; GNP_A (modified with oxygenated groups) with 359.00 m²/g; GNP_B (modified with silane) with 143.27 m²/g; and GNP_C (modified with cerium dioxide) with 66.29 m²/g. These results demonstrate that the modifications in the GNP increase the specific surface area, a potential property to improve dispersion and interaction with the epoxy matrix, positively influencing the properties of the coatings. The results showed that the samples containing GNP (CREP-0.1GNP, CREP-0.2GNP) and their modified variations, reached the 5B adhesion classification, with 0% of area removed, indicating a better adhesion property compared to the coating without NPG (CREP-0). The thermal conductivity analysis showed that the CREP-0.2GNP_B sample, with the highest concentration of GNP_B, showed a 45% increase in thermal conductivity, compared to the CREP-0 sample. In the evaluation of flexibility, the samples containing GNP resisted deformation without peeling, demonstrating that the presence of GNP maintains the adhesion of the coating under bending conditions. The thermogravimetric analysis revealed that the presence of modified GNP increased the thermal stability of the composites, and the sample containing GNP_C showed the lowest mass loss at elevated temperatures. To validate the coatings as a function of the changes in the GNP, thermal, chemical, physical, morphological and mechanical analyses were performed. The results indicate that modified GNP have the potential to enhance epoxy-based powder coatings, offering an alternative for industrial applications that require advantages in terms of coating performance.

Keywords: epoxy, graphene nanoplates, cerium dioxide, modified graphene nanoplates, nanostructured powder coatings.