

PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS E MATEMÁTICA

MESTRADO PROFISSIONAL

Produto Educacional

Um passeio pela Trigonometria através da Astronomia

> Paula Hoffmann Odilon Giovannini

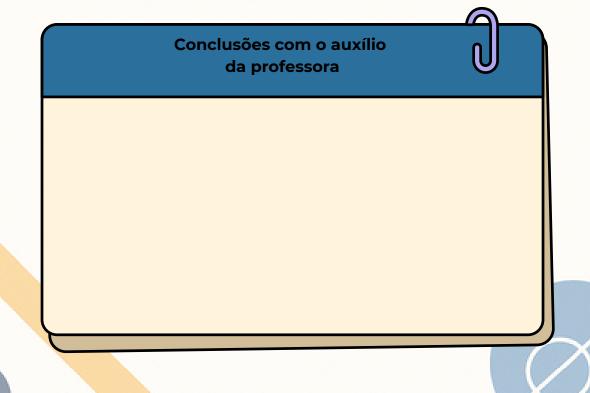
Atividade 1. Construção de triângulos semelhantes

Desenhe **três triângulos retângulos**, com os ângulos medindo **90°, 20° e 70°**, cada um com as medidas dos **lados diferentes**:

Triângulo 1

Triângulo 2

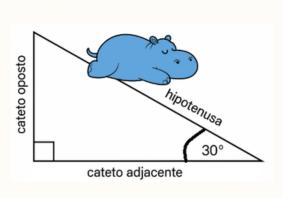
Triângulo 3



Complete a tabela com os valores encontrados e calcule as razões trigonométricas (divisões entre os lados sugeridos):

Triângulo	Ângulo	Cateto oposto (medida)	Cateto adjacente (medida)	Hipotenusa (medida)	Cateto oposto / Hipotenusa	Cateto adjacente / Hipotenusa	Cateto oposto / Cateto adjacente
1	90°						
	20°						
	70º						
2	90°						
	20°						
	70º						
3	90°						
	20°						
	70º						

Análise dos dados:


- a) Os valores das razões trigonométricas encontrados, para um mesmo ângulo, são aproximados ou distantes?
 - b) Por que você acredita que isso acontece?

Razões Trigonométricas

Dando "nomes aos bois"

$$seno = \frac{cateto\ oposto}{hipotenusa}$$

$$cosseno = \frac{cateto \ adjacente}{hipotenusa}$$

$$tangente = \frac{cateto\ oposto}{cateto\ adjacente}$$

Espaço para realização das atividades propostas pelo(a) professor(a)

Para construir o seu teodolito você irá precisar de: um transferidor, canudo, cola e tachinha. Para saber como montar, acesse o QR Code.

"Mão na massa"

Atividade 2.

Após a construção do teodolito, escolha três objetos na escola de altura inacessível (que não pode ser medida com trena). Com o teodolito em mãos, meça as distâncias e calcule alturas completando a tabela abaixo:

Objeto observado	Sua altura	Sua distância ao objeto observado	_	I I

Momento reflexão:

O que você precisa saber para conseguir medir a altura de algo que você não consegue alcançar? (Dica: pense no que foi necessário na atividade — ângulo, distância, altura dos olhos...)

A altura que o grupo encontrou ficou parecida pra todos? Por que você acha que isso aconteceu?

Todos do grupo mediram o mesmo ângulo? Se não, o que pode ter feito os valores ficarem diferentes?

Agora que vocês já construíram seu desenho e discutiram sobre as possíveis formas de medir a distância até as estrelas, chegou a hora de investigar mais a fundo e conhecer uma ferramenta usada pelos próprios astrônomos!

Etapa 1 – Pesquisa investigativa

Faça uma breve busca na internet para responder à pergunta:

➤ Como os cientistas conseguem medir a distância entre as estrelas e a Terra?

Durante sua pesquisa, você provavelmente vai encontrar uma expressão nova:

- ➤ Paralaxe estelar
- ➤ Descubra o que essa expressão significa e escreva com suas palavras como ela funciona.
 - Dica: Você pode usar vídeos, sites confiáveis ou até perguntar para o(a) professor(a) \(\bar{\pi} \)

🌟 Etapa 2 – Explorando o céu com o Stellarium

- ➤ Em duplas, utilizem o netbook/computador/celular com o software Stellarium para explorar o céu noturno.
- ➤ Navegue pelo céu, observe estrelas, constelações, planetas e anote:
 - ➤ O que mais chamou sua atenção?
 - ➤ Alguma estrela te surpreendeu pela distância, cor ou posição?
 - > Você conseguiu localizar alguma constelação conhecida?

- Explique, com suas palavras, o que é paralaxe estelar.
- ➤ Comente o que você mais gostou de observar no Stellarium.
- ➤Se fosse um astrônomo, o que você gostaria de descobrir sobre o universo?
- Prepare-se: estamos nos aproximando da matemática por trás dessas observações. A trigonometria vai nos ajudar a entender o universo de um jeito que talvez você nunca tenha imaginado!

Atividade 5: A que distância estamos?

Etapa 1.

Para entender como funciona a paralaxe estelar, vamos realizar uma simulação na própria sala de aula usando objetos simples.

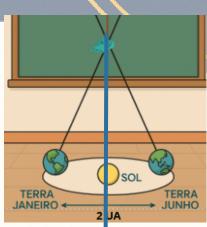
A atividade consiste em representar a Terra em dois momentos diferentes de sua órbita e observar o deslocamento aparente de uma estrela próxima em relação às estrelas de fundo.

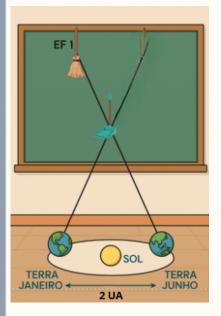

Medir e representar a distância conhecida (2 UA)

Com uma fita métrica ou trena, marque na classe duas posições que simulem a Terra em sua órbita, meça a distância entre as duas posições (o dobro da unidade astronômica simulada).

Nomeie esses pontos como:

Terra - Janeiro Terra - Junho

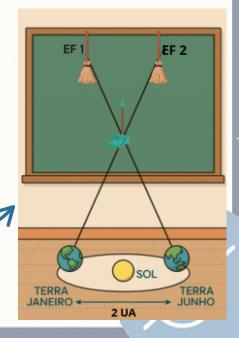

No ponto central entre essas duas marcações, coloque uma etiqueta ou marca indicando o Sol.


Etapa 2.

Posicionar a estrela central (EC)
A uma certa distância da linha entre as
posições da Terra, perpendicular ao
centro (Sol), fixe um objeto no chão que
simule a estrela cuja distância queremos
calcular.

Essa é a estrela central (EC). Ela deve estar alinhada com o Sol e a perpendicular entre as posições da Terra.

Marcação alinhada ao Sol e perpendicular às posições da Terra


Etapa 3.

Localizar a estrela de fundo EF1
Vá até a posição Terra - Junho.
Usando um dispositivo de medição de
ângulos (ou um simulador com mira), alinhe
sua visão com a estrela central (EC).
Coloque então, ao fundo (na parede ou mais
distante), a estrela de fundo EF1 de tal forma
que ela fique escondida exatamente atrás da
EC quando você olha da Terra - Junho.
(Ou seja, EC e EF1 devem estar perfeitamente
alinhadas do seu ponto de vista.)

Etapa 4.

Localizar a estrela de fundo EF2
Vá agora até a posição Terra - Junho.
Alinhe sua visão novamente com a estrela central (EC) usando o mesmo dispositivo.
Agora, ao fundo, coloque a estrela de fundo EF2 de modo que EC esconda completamente EF2 quando olhado dessa nova posição.

As posições de EF1 e EF2 devem estar em lados opostos da EC, como mostrado na figura de referência.

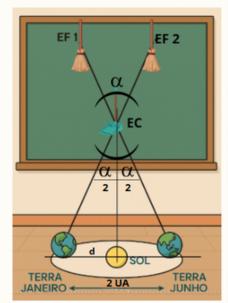
A mudança de posição da EC em relação às estrelas de fundo (EF1 e EF2) representa o ângulo de paralaxe (α).

Com base nas marcações e nas medidas dos ângulos feitos com o instrumento, podemos calcular a distância até a estrela central usando geometria.

Etapa 5.

Medição dos ângulos com o instrumento Agora que as estrelas EF1 e EF2 estão posicionadas corretamente em relação à EC, é hora de usar o instrumento de medição de ângulos (transferidor com arame, por exemplo) para fazer os registros.

a) Posição Terra - Junho Leve o instrumento até a marcação de Terra -Junho.


Posicione o arame ou mira em direção à EF1, alinhando:

➤ pino de referência + arame + EC + EF1 Anote o valor do ângulo medido com o transferidor.

b) Ainda na posição Terra - Junho Gire o arame agora em direção à EF2.

▶ pino + arame + EC + EF2 devem estar alinhados.

Anote também esse segundo valor de ângulo.

Etapa 6. Cálculo do ângulo de paralaxe Agora que você tem os dois valores:

Agora que você tem os dois valores:

- θ₁: ângulo com a EF1
- $heta_2$: ângulo com a EF2

$$lpha = | heta_1 - heta_2|$$

Basta calcular a diferença entre eles:

Etapa 7.

Representação gráfica (desenho) Com os dados obtidos, você pode agora desenhar uma figura esquemática da simulação, com:

A linha base (2 UA) representando a distância entre as duas posições da Terra.
O ponto central (EC) à frente, com as duas linhas de visão para EF1 e EF2.
O ângulo α marcado entre essas linhas.
Essa figura mostra exatamente como os astrônomos modelam o cálculo da distância estelar — a partir de simples observações de mudança de posição

relativa!

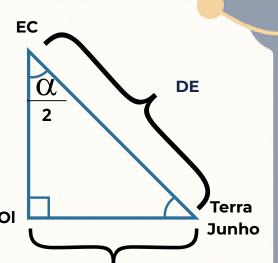
Desenhe aqui!

DE CC CC 2 2 TERRA 2 UA JUNHO

Etapa 8.

Cálculo da distância até a estrela (de)
A partir do desenho feito na etapa
anterior, podemos identificar
claramente os seguintes elementos:
DE: a distância que queremos encontrar
— da Terra ate a estrela EC (ou do Sol
até a estrela EC dependendo da escolha
do modelo).

α/2: o ângulo de paralaxe, ou seja, a metade do deslocamento aparente total.


d: a distância da Terra ao Sol, conhecida e usada como base.

Formação do triângulo retângulo Ao ligar:

o ponto Terra - Janeiro ou Terra - Junho ao Sol e à estrela central (EC) ...formamos um triângulo retângulo, onde:

- o cateto oposto ao ângulo é d
- o cateto adjacente é a distância que sol queremos calcular, DE

Etapa 10.

Usando trigonometria, vamos encontrar a medida DE d no triângulo retângulo, usando a tangente:

$$tg \ lpha = rac{cateto \ oposto}{cateto \ adjacente} \ tg \ lpha = rac{d \ (distancia \ que \ conhecemos)}{DE \ (distancia \ da \ Terra \ até \ a \ estrela)}$$

ltem	Anote aqui			
Base (distância entre as posições Terra Janeiro - Terra Junho)				
Ângulo medido em Janeiro				
Ângulo medido em Junho				
Ângulo de paralaxe				
Metade da paralaxe				
Cálculo final da distância entre a Terra e a estrela de fundo EC				

Escreva um pequeno parágrafo contando o que você mais aprendeu, o que achou mais interessante ou desafiador nessa atividade.

Você se sente mais capaz de entender o céu depois dela?

↑ Sabia que...?

A missão Gaia, da Agência Espacial Europeia, já mapeou mais de 1 bilhão de estrelas usando paralaxe com uma precisão de milionésimos de grau!

Quem sabe um dia... você também possa ajudar a mapear o universo. 🌠

Mini Dicionário

Termo	Significado			
Ângulo	Abertura formada entre duas retas que se encontram em um ponto comum (vértice).			
Ângulo de paralaxe (α)	Diferença entre os ângulos de visão de uma estrela próxin em relação a duas posições distintas de observação.			
Base (da simulação)	Distância entre as duas posições da Terra (Janeiro e Junho simulando 2 UA.			
Cateto oposto / adjacente	Lados de um triângulo retângulo usados nos cálculos trigonométricos.			
Deslocamento aparente	Movimento ilusório de um objeto quando observado de pontos diferentes.			
Distância (d ou DE)	Medida entre a Terra (ou o Sol) e a estrela central (EC), calculada na atividade.			
Estrela Central (EC)	Objeto da simulação cuja distância se deseja determinar.			
Estrelas de Fundo (EF1, EF2)	Referências fixas usadas para notar o deslocamento aparente da EC.			
Linha de visão	Direção imaginária que liga o observador ao objeto observado.			
Paralaxe	Fenômeno em que um objeto parece mudar de posição quando visto de lugares diferentes.			
Ponto de observação	Lugar de onde se observa o fenômeno (simulado como Terra - Janeiro e Terra - Junho).			
Radiano	Unidade de medida de ângulos no sistema internacional (às vezes usada na trigonometria).			
Razão trigonométrica	Relação entre lados de um triângulo retângulo (como seno, cosseno e tangente).			
Simulação	Representação prática e simplificada de um fenômeno real.			
Tangente (tan)	Razão entre o cateto oposto e o cateto adjacente de um triângulo retângulo.			
Teodolito	Instrumento usado para medir ângulos horizontais e verticais.			
Triângulo Retângulo	Triângulo que possui um ângulo de 90°.			
UA (Unidade <mark>Astronô</mark> mica)	Distância média entre a Terra e o Sol, aproximadamente 150 milhões de quilômetros.			