UNIVERSIDADE DE CAXIAS DO SUL ÁREA DO CONHECIMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS

MAICON DOUGLAS BERNARDI

ANÁLISE DO DESEMPENHO E DAS EMISSÕES DE UM MOTOR CICLO DIESEL OPERANDO COM MISTURAS ETANOL - ÓLEO DE MAMONA

CAXIAS DO SUL

MAICON DOUGLAS BERNARDI

ANÁLISE DO DESEMPENHO E DAS EMISSÕES DE UM MOTOR CICLO DIESEL OPERANDO COM MISTURAS ETANOL – ÓLEO DE MAMONA

Trabalho de conclusão de curso apresentado como requisito parcial para a conclusão do curso de Engenharia Mecânica da Universidade de Caxias do Sul. Área de concentração: Engenharia Térmica.

Orientador: Prof. Dr. Carlos Roberto Altafini.

CAXIAS DO SUL 2019

MAICON DOUGLAS BERNARDI

ANÁLISE DO DESEMPENHO E DAS EMISSÕES DE UM MOTOR CICLO DIESEL OPERANDO COM MISTURAS ETANOL – ÓLEO DE MAMONA

Trabalho de conclusão de curso apresentado como requisito parcial para conclusão do curso de Engenharia Mecânica da Universidade de Caxias do Sul.

Aprovado em

Banca examinadora

Prof. Dr. Carlos Roberto Altafini Universidade de Caxias do Sul - UCS

Prof. Me. Adelair Lino Colombo Universidade de Caxias do Sul – UCS

Eng. Me. Giovani Dambros Telli Universidade Federal do Rio Grande do Sul - UFRGS

Aos meus pais, Olivo (*in memoriam*) e Carmen, namorada, amigos e colegas pelo incentivo e apoio ao longo do período de graduação e execução do trabalho.

RESUMO

Neste trabalho foi analisada a operação de um motor de combustão interna com ignição por compressão, no modo monocombustível com óleo diesel (OD) e bicombustível, utilizando misturas de etanol hidratado (ETH) e óleo de mamona (OM). Os experimentos foram conduzidos com um motor monocilíndrico, acoplado a um dinamômetro de correntes de Foucault refrigerado a água, em operação à plena carga, variando a rotação de 1700 a 2750 rpm a cada 150 rpm. O motor foi ajustado com taxas de compressão (TC) de 20:1 e 21,5:1 e pontos de injeção (PI) de 10° e 17° antes do ponto morto superior. Os ensaios foram realizados com o motor funcionando só com OD e com duas misturas ETH-OM preparadas nas proporções em volume de: 60% de ETH e 40% de OM; e 70% de ETH e 30% de OM. Nos ensaios experimentais foram obtidos dados de desempenho do motor, sendo o torque, potência, consumo, eficiência de conversão dos combustíveis e temperaturas, também foram realizadas análises das emissões, com o monitoramento do índice de fumaça, monóxido de carbono (CO), dióxido de carbono (CO₂), hidrocarbonetos (HC) e óxidos de nitrogênio (NO_x). De modo geral, o torque e, por consequência, a potência desenvolvida pelo motor com o OD foi superior às misturas ETH-OM, com consumos específicos de combustível menores. As eficiências de conversão dos combustíveis para as misturas ETH-OM, foram maiores do que àquelas do OD, havendo uma significativa redução da temperatura dos gases de escape no funcionamento do motor com as misturas, evitando desta forma perdas térmicas excessivas. Os resultados de emissões obtidos com as misturas apresentaram grandes reduções em relação aos obtidos com o OD, ao ponto do índice de fumaça ser "zero" em mais de uma rotação avaliada. Entretanto, a emissão de HC para as misturas foi maior do que àquela do OD, o que está relacionado à presença de ETH nas misturas, causando resfriamento no processo de combustão e dificultando a queima por completo dos combustíveis. Mesmo o motor não tendo apresentado resultados de desempenho superiores aos do OD, com o funcionamento das misturas, os resultados obtidos foram satisfatórios, a ponto de obter dados de emissões que podem contribuir com informações sobre a operação do motor com combustíveis alternativos, os quais podem ser utilizados para definições e prospecções de legislações futuras.

Palavras-chave: motor de ignição por compressão. misturas etanol - óleo de mamona. dinamômetro. parâmetros de desempenho e emissões.

ABSTRACT

In this work we analyzed the operation of a compression ignition internal combustion engine in single fuel mode with diesel (OD) and dual fuel, using blends of hydrous ethanol (ETH) and castor oil (OM). The experiments were conducted with a single cylinder engine, coupled to a water cooled Foucault current dynamometer, under full load operation, varying the speed from 1700 to 2750 rpm every 150 rpm. The engine was adjusted with compression ratios (TC) of 20:1 and 21.5:1 and injection points (PI) of 10° and 17° before the top dead center. The tests were performed with the engine running only on OD and with two ETH-OM blends prepared in the volume proportions of: 60% ETH and 40% OM; and 70% ETH and 30% OM. In the experimental tests, engine performance data were obtained, such as torque, power, fuel consumption, fuel conversion efficiency and temperatures. Emissions analyzes were also performed, with monitoring of smoke index, carbon monoxide (CO), carbon dioxide (CO₂), hydrocarbons (HC) and nitrogen oxides (NO_x) . Overall, the torque and, consequently the power developed by the engine with the OD was higher than the ETH-OM blends, with lower specific fuel consumption. The fuel conversion efficiencies for the ETH-OM blends were higher than those of the OD, with a significant reduction in the exhaust gas temperature in engine operation with the blends, thus avoiding excessive thermal losses. Emissions results obtained with the blends showed large reductions compared to those obtained with the OD, to the point where the smoke index was "zero" in more than one evaluated speed. However, the emission of HC for the blends was higher than that of OD, which is related to the presence of ETH in the blends, causing cooling in the combustion process and making it difficult to completely burn the fuels. Even though the engine did not show superior performance results than the OD, with the operation of the blends, the results obtained were satisfactory, to the point of obtaining emission data that can contribute information about the operation of the engine with alternative fuels, which can be used for definitions and prospects of future legislation.

Keywords: compression ignition engine. ethanol-castor oil blends. dynamometer. performance and emissions parameters.

LISTA DE ILUSTRAÇÕES

Figura 1 - Tempos característicos de operação do motor de ICO	18
Figura 2 - Representação do freio de Prony	22
Figura 3 - Composição interna de um dinamômetro hidráulico de enchimento variável	23
Figura 4 - Método para calibração de um dinamômetro com carcaça oscilante	24
Figura 5 - Medidor volumétrico para consumo de combustível	25
Figura 6 - Medição gravimétrica do consumo de combustível	26
Figura 7 - Evolução da produção nacional de etanol hidratado e anidro - 2008-2017	30
Figura 8 - Evolução da produção de biodiesel (B100) no Brasil - 2008-2017	31
Figura 9 - Fluxograma com as etapas do trabalho	37
Figura 10 - Esquema de montagem do experimento	38
Figura 11 - Verificação da folga na câmara de combustão com o pistão no PMS	39
Figura 12 - Dispositivos para ajuste do ponto de injeção	40
Figura 13 - Dinamômetro Schenck W130-130 kW	43
Figura 14 - Supervisório do dinamômetro Schenck W130-130 kW	44
Figura 15 - Medidor de índice de fumaça AVL Smoke Meter 409D2	45
Figura 16 - Densímetros Incoterm para medição de petróleo e seus derivados líquidos	46
Figura 17 - Miniestação meteorológica Kestrel, modelo 4000	48
Figura 18 - Recipientes graduados para medições volumétricas	48
Figura 19 - Torque (N·m) desenvolvido com TC20-PI10	55
Figura 20 - Torque (N·m) desenvolvido com TC20-PI17	56
Figura 21 - Torque (N·m) desenvolvido com TC21.5-PI10	57
Figura 22 - Torque (N·m) desenvolvido com TC21.5-PI17	58
Figura 23 - Potência (kW) desenvolvida com TC20-PI10	60
Figura 24 - Potência (kW) desenvolvida com TC20-PI17	60
Figura 25 - Potência (kW) desenvolvida com TC21.5-PI10	61
Figura 26 - Potência (kW) desenvolvida com TC21.5-PI17	62
Figura 27 - Consumo específico de combustível (g/kWh) com TC20-PI10	63
Figura 28 - Consumo específico de combustível (g/kWh) com TC20-PI17	64
Figura 29 - Consumo específico de combustível (g/kWh) com TC21.5-PI10	65
Figura 30 - Consumo específico de combustível (g/kWh) com TC21.5-PI17	66
Figura 31 - Eficiências de conversão dos combustíveis (%)	67
Figura 32 - Temperaturas dos gases de escape (°C)	67

Figura 33 - Índices de fumaça dos gases de escape (UB)	69
Figura 34 - Emissões de CO (% em volume)	70
Figura 35 - Emissões de CO ₂ (% em volume)	71
Figura 36 - Emissões de HC (ppm)	71
Figura 37 - Emissões de NO _x (ppm)	72

LISTA DE TABELAS

Tabela 1 - Propriedade dos combustíveis	27
Tabela 2 - Comparação entre óleos diesel com distintos teores de enxofre	28
Tabela 3 - Características físicas de óleos vegetais	31
Tabela 4 - Produtividade de algumas culturas com potencial para produção de biodiesel	33
Tabela 5 - Nomenclaturas dos ensaios experimentais	38
Tabela 6 - Características do motor Agrale M93 ID	43
Tabela 7 - Especificações do analisador de gases AVL DiCom 4000	46
Tabela 8 - Viscosidade das amostras em função da temperatura	52
Tabela 9 - Densidade das amostras	52
Tabela 10 - Cálculo do PCI de cada mistura	53
Tabela 11 - Fator para ajuste de potência (α)	54
Tabela 12 - Síntese dos resultados	73

LISTA DE SIGLAS

ANP	Agência nacional do petróleo, gás natural e biocombustíveis
APMS	Antes do ponto morto superior
BE	Bioetanol
BM	Biodiesel de mamona
BS	Biodiesel de soja
DPMS	Depois do ponto morto superior
ETH	Etanol hidratado
FISPQ	Ficha de informações de segurança de produtos químicos
ICE	Ignição por centelha
ICO	Ignição por compressão
MCI	Motor de combustão interna
NC	Número de cetano
OD	Óleo diesel
OM	Óleo de mamona
PC	Poder calorífico
PI	Ponto de injeção
PMI	Ponto morto inferior
PMS	Ponto morto superior
RC _G	Razão de compressão geométrica
ТС	Taxa de compressão
UCS	Universidade de Caxias do Sul
UB	Unidade Bosch (SZ – Bosch)

LISTAS DE SÍMBOLOS

C_e	Consumo específico	g/kWh
D	Diâmetro	m
PCI	Poder calorífico inferior	kJ/kg
PCIm	Poder calorífico inferior na base mássica	kJ/kg
PCIETH	Poder calorífico inferior do etanol hidratado	kJ/kg
PCI _{OM}	Poder calorífico inferior do óleo de mamona	kJ/kg
P_e	Potência efetiva	W
P_i	Potência indicada	W
P_p	Potência perdida	W
S	Curso de deslocamento do pistão	m
Т	Torque	N·m
V_{cc}	Volume da câmara de combustão	m³
V_{cil}	Volume do cilindro	m³
W_i	Trabalho indicado	N·m
\dot{m}_c	Vazão mássica de combustível	g/h
m_f	Massa final de combustível	g
m_i	Massa inicial de combustível	g
n	Rotação	rpm
n f	Fuel conversion efficiency	
η_m	Rendimento mecânico	
α	Fator para ajuste de potência	
ω	Velocidade angular	rad/s
УЕТН	Fração mássica de etanol hidratado	
Уом	Fração mássica de óleo de mamona	

SUMÁRIO

1	INTRODUÇÃO	14
1.1	CONTEXTUALIZAÇÃO	14
1.2	JUSTIFICATIVA DO TRABALHO	15
1.3	OBJETIVOS	16
1.3.1	Objetivo geral	16
1.3.2	Objetivos específicos	16
2	REVISÃO BIBLIOGRÁFICA	17
2.1	CARACTERÍSTICAS DE FUNCIONAMENTO DOS MCI	17
2.2	PROPRIEDADES DOS MOTORES	19
2.2.1	Potência indicada	19
2.2.2	Potência efetiva ou de eixo	20
2.2.3	Potência absorvida pela resistência passiva	20
2.2.4	Rendimento mecânico	20
2.2.5	Taxa de compressão	21
2.3	DINAMÔMETRO	21
2.3.1	Freio de Prony	21
2.3.2	Dinamômetros hidráulicos	22
2.3.3	Dinamômetros elétricos	23
2.3.4	Calibração do dinamômetro	23
2.4	CONSUMO DE COMBUSTÍVEL	24
2.4.1	Consumo específico em motores de combustão interna	24
2.4.2	Medição volumétrica	25
2.4.3	Medição gravimétrica	25
2.5	COMBUSTÍVEIS	26
2.5.1	Propriedades dos combustíveis	
2.5.2	Óleo diesel	
2.5.3	Etanol	
2.5.4	Biodiesel	
2.5.5	Óleo de mamona	32
2.6	TRABALHOS NA ÁREA	
3	MATERIAIS E MÉTODOS	
3.1	PARÂMETROS DE OPERAÇÃO DO MOTOR	

3.1.1	Definição da taxa de compressão	
3.1.2	Definição do ponto de injeção	40
3.2	PROCEDIMENTOS EXPERIMENTAIS	41
3.3	EQUIPAMENTOS UTILIZADOS	42
3.3.1	Motor	42
3.3.2	Banco de ensaios	43
3.3.3	Medição do consumo de combustível	44
3.3.4	Medidor do índice de fumaça	45
3.3.5	Analisador de gases	45
3.3.6	Densímetro	46
3.3.7	Reômetro	47
3.3.8	Sensor de temperatura	47
3.3.9	Bomba calorimétrica	47
3.3.10	Medições meteorológicas	47
3.3.11	Buretas graduadas	48
3.4	CORREÇÃO DOS RESULTADOS DE POTÊNCIA	49
3.5	CÁLCULOS DE EFICIÊNCIA E PODER CALORÍFICO	50
		= -
4	RESULTADOS	
4 4.1	RESULTADOS	52
4 4.1 4.2	RESULTADOS CARACTERÍSTICAS DOS COMBUSTÍVEIS ANÁLISE DE DESEMPENHO	52 52 53
4 4.1 4.2 4.2.1	RESULTADOS CARACTERÍSTICAS DOS COMBUSTÍVEIS ANÁLISE DE DESEMPENHO Torque	52 52 53 54
4 4.1 4.2 4.2.1 4.2.1.1	RESULTADOS	52 52 53 53
4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2	RESULTADOS CARACTERÍSTICAS DOS COMBUSTÍVEIS ANÁLISE DE DESEMPENHO Torque	52 53 53 54 55 56
4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3	RESULTADOSCARACTERÍSTICAS DOS COMBUSTÍVEISANÁLISE DE DESEMPENHOTorqueTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 20:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMS	52 53 53 54 55 56 57
4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4	RESULTADOSCARACTERÍSTICAS DOS COMBUSTÍVEISANÁLISE DE DESEMPENHOTorqueTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 20:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMS	52 53 54 55 56 57 58
 4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 4.2.2 	RESULTADOS CARACTERÍSTICAS DOS COMBUSTÍVEIS ANÁLISE DE DESEMPENHO Torque Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS Potência	52 53 54 55 56 57 58 59
 4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 4.2.2 4.2.2.1 	RESULTADOSCARACTERÍSTICAS DOS COMBUSTÍVEISANÁLISE DE DESEMPENHOTorqueTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 20:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMS	52 53 53 54 55 56 57 58 58 59 59
 4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 4.2.2 4.2.2.1 4.2.2.1 4.2.2.2 	RESULTADOS CARACTERÍSTICAS DOS COMBUSTÍVEIS ANÁLISE DE DESEMPENHO Torque Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS	52 53 53 54 55 56 57 58 59 59
 4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 4.2.2 4.2.2.1 4.2.2.2 4.2.2.3 	RESULTADOS CARACTERÍSTICAS DOS COMBUSTÍVEIS ANÁLISE DE DESEMPENHO Torque Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS	52 53 54 55 56 57 58 59 59 60 61
 4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 4.2.2 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 	RESULTADOSCARACTERÍSTICAS DOS COMBUSTÍVEISANÁLISE DE DESEMPENHOTorqueTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 20:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 20:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMS	52 53 54 55 56 56 57 58 59 59 60 61 62
 4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 4.2.2 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 4.2.3 	RESULTADOS CARACTERÍSTICAS DOS COMBUSTÍVEIS ANÁLISE DE DESEMPENHO Torque Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS	52 53 54 55 56 56 57 58 59 60 61 62 63
 4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 4.2.2 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 4.2.3 4.2.3.1 	RESULTADOSCARACTERÍSTICAS DOS COMBUSTÍVEISANÁLISE DE DESEMPENHOTorqueTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 20:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 20:1 e ponto de injeção de 17° APMSTaxa de compressão de 20:1 e ponto de injeção de 17° APMSTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 20:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 17° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMSTaxa de compressão de 21,5:1 e ponto de injeção de 10° APMS	52 53 54 55 56 56 57 58 59 60 61 62 63
 4 4.1 4.2 4.2.1 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4 4.2.2 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 4.2.3 4.2.3.1 4.2.3.2 	RESULTADOS CARACTERÍSTICAS DOS COMBUSTÍVEIS ANÁLISE DE DESEMPENHO Torque Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS Potência Taxa de compressão de 20:1 e ponto de injeção de 17° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS Taxa de compressão de 20:1 e ponto de injeção de 10° APMS	52 53 54 55 56 56 57 58 59 60 61 62 63 63 63

4.2.3.4	Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS	65
4.2.4	Eficiência	66
4.2.5	Temperaturas	67
4.3	ANÁLISE DOS GASES DE COMBUSTÃO	68
4.3.1	Índice de fumaça	68
4.3.2	Emissão de monóxido de carbono (CO)	69
4.3.3	Emissão de dióxido de carbono (CO2)	70
4.3.4	Emissão de hidrocarbonetos (HC)	71
4.3.5	Emissão de óxidos de nitrogênio (NO _x)	72
4.4	SÍNTESE DOS RESULTADOS	73
5	CONCLUSÃO	74
5.1	SUGESTÕES PARA TRABALHOS FUTUROS	76
REFERÍ	ÈNCIAS BIBLIOGRÁFICAS	77
ANEXO	A – LAUDO TÉCNICO DO ÓLEO DE MAMONA	81

ANEXO A – LAUDO TÉCNICO DO ÓLEO DE MAMONA	81
ANEXO B – LAUDO TÉCNICO DO ÓLEO DIESEL	82
ANEXO C – LAUDO TÉCNICO DO ETANOL HIDRATATO	.83
APÊNDICE A – COLETAS REALIZADAS NOS ENSAIOS	84
APÊNDICE B – MÉDIAS E CORREÇÕES DOS VALORES OBTIDOS	.86
APÊNDICE C – DESVIO PADRÃO DOS RESULTADOS OBTIDOS	.88

1 INTRODUÇÃO

1.1 CONTEXTUALIZAÇÃO

O desenvolvimento de máquinas para atender as necessidades diversas da humanidade evoluiu ao longo dos séculos, sendo que o motor de combustão interna (MCI) passou por diversos ajustes e melhorias, porém, seu funcionamento básico é o mesmo desde sua criação.

Conforme Brunetti (2012), a combustão é um processo químico exotérmico de oxidação de um combustível, para que ocorra a reação do combustível com o oxigênio do ar, necessitando de um agente que proporcione o início da reação. No caso de motores a diesel, a combustão ocorre pela autoignição do combustível ao entrar em contato com as altas temperaturas da câmara de combustão geradas pela compressão do ar.

Segundo Bronzatti e Neto (2008), a demanda energética de um país está amplamente relacionada com a sua atividade econômica, combustíveis fósseis são as principais fontes de energia utilizadas nos MCIs. Esses motores estão presentes nos veículos de transportes rodoviários, de cargas e movimentação, que são responsáveis por escoar grande parte da produção do país.

Há décadas o projeto de veículos visa a utilização de combustíveis fósseis, e com isso o mercado de combustíveis se desenvolveu para atender a demanda. Quando comparado aos sistemas de propulsão elétricos, os MCIs desenvolvem menor rendimento, porém, devido à facilidade de utilização de combustíveis e questões econômicas, a perspectiva para utilização dos mesmos ainda será grande para os próximos anos.

O processo de combustão de motores gera emissões de gases poluentes, principalmente quando esta ocorre de forma incompleta. Segundo Bendu e Murugan (2014), o processo de combustão resulta na emissão de gases como dióxido de carbono (CO₂), monóxido de carbono (CO), hidrocarbonetos (HC), óxidos de nitrogênio (NO_x) e material particulado (MP).

Com o decorrer dos anos a produção de biocombustíveis continua aumentando, sendo que dados da *International Energy Agency* (2018) demonstram que a América Latina e a Ásia possuem os maiores crescimentos na produção de biocombustíveis. Embora a mobilidade elétrica evolua rapidamente, a previsão é que para 2023 os biocombustíveis detenham quase 90% da demanda de energia do setor de transporte, o que demonstra grande perspectiva na utilização em MCIs.

Muito vem-se estudando sobre o desempenho de motores ciclo diesel operando com biocombustíveis, Brunelli (2009) avaliou três tipos de biodiesel e constatou que o índice de fumaça diminuiu em relação ao do óleo diesel. A tendência de utilização de biocombustíveis, além de ser uma alternativa renovável, pois não dependem de origens fósseis, demonstram-se menos prejudiciais ao meio ambiente.

Atualmente, os combustíveis utilizados no mercado econômico em geral, facilmente encontrados em postos de combustíveis, possuem outros combustíveis renováveis neles diluídos. Segundo fichas de informações de segurança de produtos químicos (FISPQs), a gasolina comum possui até 27,5% de álcool etílico anidro em sua composição e o óleo diesel possui 11% de biodiesel. Essas diluições, que foram aumentando ao longo do tempo, demonstram a aceitação do uso de biocombustíveis.

Devido a empregabilidade dos biocombustíveis e principalmente a fatores ambientais, relacionados às emissões de poluentes por motores de combustão interna, o estudo envolvido neste trabalho visa contribuir com informações técnicas de desempenho e emissões para o desenvolvimento de motores e combustíveis, corroborando com a possibilidade de substituição dos combustíveis fósseis.

O trabalho foi desenvolvido no laboratório de motores do setor de Engenharia Experimental da empresa Agrale S/A, sediada em Caxias do Sul – RS. O laboratório possui uma área de 102 m² onde são dispostas três salas: uma com oficina completa para desmontagem e análise de motores; e outras duas para ensaios dinamométricos de motores. Uma das salas de ensaios conta com um dinamômetro elétrico de corrente parasita marca Hoffmann, modelo 12D e na outra sala há disponível um dinamômetro da marca Schenck, modelo W130 -130 kW, tipo correntes de Foucault, refrigerado à água.

1.2 JUSTIFICATIVA DO TRABALHO

Ao decorrer dos anos, restrições ambientais são impostas às emissões geradas por indústrias, grandes centros e principalmente a equipamentos e veículos que utilizam MCIs. Diante disso, os níveis de poluentes devem atender valores permissíveis impostos por legislações vigentes, fazendo com que os fabricantes variem parâmetros de projeto, regulagens, gerenciamento e tratamento de gases dos motores para se adequarem as exigências.

Com isso, estudos que visam a utilização de combustíveis alternativos, como os biocombustíveis, aplicados diretamente a motores de combustão interna, ou mesmo diluídos em combustíveis fósseis, também servem como subsídio para determinação e projeção do funcionamento dos motores dentro de premissas estabelecidas, como o atendimento das legislações.

1.3 OBJETIVOS

1.3.1 Objetivo geral

Como objetivo geral, este trabalho visa a análise experimental, em dinamômetro, do desempenho e das emissões de um motor ciclo diesel monocilíndrico operando com óleo diesel e misturas controladas de etanol hidratado e óleo de mamona, sendo ajustado com distintas taxas de compressão e pontos de injeção.

1.3.2 Objetivos específicos

Com o intuito de atender o objetivo geral do trabalho, os objetivos específicos são os seguintes:

- a) definir e caracterizar as proporções das misturas a serem avaliadas de etanol hidratado e óleo vegetal de mamona (ETH-OM), além da identificação das principais propriedades do óleo diesel (OD);
- b) avaliar o desempenho termomecânico (levantamento de curvas de desempenho) para determinar a potência, consumo de combustível e eficiência de conversão dos combustíveis com os distintos ajustes no modo monocombustível (OD) e bicombustível (misturas ETH-OM);
- c) avaliar os gases de escape resultantes da queima de cada combustível nos modos definidos, identificando a composição, concentração, opacidade e temperatura;
- d) comparar os resultados de desempenho e emissões obtidos com o funcionamento do motor.

2 REVISÃO BIBLIOGRÁFICA

2.1 CARACTERÍSTICAS DE FUNCIONAMENTO DOS MCI

As primeiras tentativas para o desenvolvimento do motor de combustão foram em meados da segunda metade do século XVII, onde foi utilizada a pólvora para realizar o movimento de um pistão dentro de um cilindro. Documentos históricos demonstram que Leonardo da Vinci, em meados de 1508, propunha a elevação de peso por meio de fogo. Ao longo da evolução do motor, Denis Papin, ajudante de Christian Huygens que idealizou o motor a pólvora, propôs o funcionamento da máquina a vapor, que evoluiu com Thomas Savery, Thomas Newcomen e James Watt. A máquina a vapor propiciou a Revolução Industrial da segunda metade do Século XVIII (TILLMANN, 2013).

Em 1876, Nicolas Otto apresenta um motor de quatro tempos que funcionava a partir dos princípios apresentados por Beau de Rochas em 1862. Esse motor era mais compacto e leve em relação aos motores atmosféricos da época, sendo este um dos avanços que fundaram a indústria de motores de combustão interna. Em 1892, Rudolf Diesel delineou uma nova forma de funcionamento dos motores de combustão interna, onde a combustão foi iniciada injetando um combustível líquido no ar aquecido somente por compressão, isso permitiu aumentar a eficiência no funcionamento dos motores (HEYWOOD, 1988).

Segundo Tillmann (2013), a diferença entre os processos de combustão se dá na disposição dos reagentes, que são substâncias chamadas de combustível e comburente. Em motores com ignição por centelha (ICE) os reagentes normalmente são pré-misturados, enquanto em motores de ignição por compressão (ICO), os reagentes são misturados na combustão. Para uma correta combustão em motores de ICE, a relação ar/combustível deve ser estequiométrica (quimicamente correta), o controle da potência desses motores é regulado através da variação da massa de combustível e/ou ar na câmara de combustão. Ao contrário, em motores de ICO, a mistura somente é estequiométrica na frente de chama, a potência então pode ser controlada pela variação da quantidade de combustível a ser injetada.

Segundo Giacosa (2000), os motores alternativos podem ser classificados de várias maneiras: dependendo do sistema de ignição, podem ser por centelha ou compressão; pelo ciclo de operação, são de 2 ou 4 tempos; pelo sistema de injeção de combustível, os motores podem ser carburados ou de injeção; e pelo sistema de alimentação, podem ser de aspiração natural ou sobrealimentados.

Os quatro tempos característicos de um motor ciclo diesel são a aspiração, compressão,

expansão e escape, conforme exposto na Figura 1. Para que esses quatro tempos ocorram é necessário que o virabrequim realize a rotação angular de 720°, ou seja, realize duas rotações completas.

Figura 1 - Tempos característicos de operação do motor de ICO

Fonte: Adaptado de Giacosa (2000)

Segundo Brunetti (2012), no tempo de admissão o pistão desloca-se do ponto morto superior (PMS) para o ponto morto inferior (PMI), com este movimento o pistão dá origem a uma sucção (depressão) que causa um fluxo de ar ambiente através da válvula de admissão. Neste tempo a válvula de admissão encontra-se aberta, fazendo com que o cilindro seja preenchido com mistura ar-combustível ou somente ar nos motores de injeção direta de combustível. No tempo de compressão as válvulas de admissão e escape encontram-se fechadas, o pistão realiza o deslocamento do PMI para o PMS, o deslocamento gera a diminuição do volume da mistura ou do ar contido no cilindro do motor, acarretando em um aumento de pressão e temperatura. Próximo ao PMS é gerada uma centelha para provocar a ignição da mistura em motores ciclo Otto, entretanto, em motores ciclo Diesel é realizada a injeção do combustível, iniciando-se assim uma combustão espontânea. A combustão provoca uma grande elevação da pressão e expansão dos gases, que permite deslocar o pistão em direção ao PMI, caracterizando assim o terceiro ciclo do motor, a expansão, que é responsável por realizar o trabalho positivo (útil) do motor. Por fim ocorre o ciclo de escape, no qual a válvula de escape está aberta e o pistão desloca-se do PMI para o PMS, fazendo com que os gases gerados no processo de queima sejam deslocados para fora do cilindro.

2.2 PROPRIEDADES DOS MOTORES

A indústria automotiva é um dos principais exemplos de aplicação dos MCI, porém estes também são encontrados em diversos setores com variadas aplicações. A determinação das propriedades dos motores é de extrema importância, pois muitas vezes, a partir destas, são realizados os dimensionamentos dos projetos que os utilizam.

As principais informações sobre os motores, facilmente encontradas em manuais e especificações técnicas, são a potência e o torque máximo desenvolvido em uma rotação específica.

2.2.1 Potência indicada

A pressão média do ciclo ou pressão média indicada (P_{mi}) é definida como uma pressão, que se aplicada constantemente na cabeça do pistão ao decorrer do curso de expansão, produziria o mesmo trabalho do ciclo (BRUNETTI, 2012).

Com isso, o trabalho indicado (W_i) [N·m] é determinado pela multiplicação da pressão média indicada [Pa] pelo volume do cilindro [m³], que é determinado pela área do pistão, onde D é o diâmetro do mesmo [m] e S é o curso de deslocamento do pistão [m]. A Equação (1) demonstra a multiplicação dos termos.

$$W_i = \frac{\pi \cdot D^2}{4} \cdot S \cdot P_{mi} \tag{1}$$

Como a potência é o trabalho por unidade de tempo, possuindo-se o trabalho, a potência é determinada multiplicando o mesmo pela frequência com que é realizado (BRUNETTI, 2012).

Assim para motores de 4 tempos, a potência indicada (P_i) [W] é resultante da multiplicação descrita na Equação (2).

$$P_i = W_i \cdot \frac{\omega}{2} \cdot z \tag{2}$$

onde, ω é a velocidade angular [rad/s] e z é o número de cilindros do motor.

2.2.2 Potência efetiva ou de eixo

A potência de maior interesse prático é a gerada pelo torque de saída, disponível no virabrequim, denominada de potência efetiva. Como esta potência é determinada através da medição do torque com a utilização de um dinamômetro, também pode ser chamada de potência de freio (GIACOSA, 2000). A Equação (3) demonstra o cálculo da potência efetiva (P_e) [W].

$$P_e = T \cdot \omega = \frac{2 \cdot \pi \cdot T \cdot n}{60} \tag{3}$$

onde, *T* é o torque [N·m], ω é a velocidade angular obtida [rad/s] e *n* é a rotação [rpm].

2.2.3 Potência absorvida pela resistência passiva

Segundo Giacosa (2000), a potência absorvida pelas resistências passivas é a potência perdida no motor. Essa potência é utilizada para poder superar os atritos dos componentes mecânicos em movimento e poder movimentar consumidores, como por exemplo a bomba de água do sistema de arrefecimento, bomba de óleo do sistema de lubrificação, etc. Sua determinação é realizada pela diferença entre a potência efetiva e potência indicada.

Conforme Equação (4), P_p é a potência absorvida ou perdida [W], P_i é a potência indicada e P_e é a potência efetiva.

$$P_p = P_i - P_e \tag{4}$$

2.2.4 Rendimento mecânico

O rendimento mecânico de um MCI está relacionado com as perdas por atrito de componentes móveis e a inércia necessária para manter essas peças em operação (TELLI, 2018).

Segundo Giacosa (2000), o rendimento mecânico (η_m) é calculado através da razão entre a potência efetiva e a potência indicada, conforme Equação (5).

$$\eta_m = \frac{P_e}{P_i} \tag{5}$$

2.2.5 Taxa de compressão

A taxa de compressão, é a razão que indica quantas vezes o volume da mistura ar/combustível ou apenas de ar, aspirado para dentro do cilindro pelo pistão é reduzido na compressão dentro da câmara de combustão, antes que se inicie o processo de queima. A taxa de compressão é diretamente responsável a eficiência térmica do MCI do ponto de vista termodinâmico. Assim, com taxas de compressão mais altas, melhor será o aproveitamento energético que o motor estará fazendo do combustível (TILLMANN, 2013).

A taxa de compressão é definida conforme Equação (6).

$$RC_G = \frac{V_{cc} + V_{cil}}{V_{cc}} \tag{6}$$

onde, RC_G é a razão de compressão geométrica, V_{cc} é o volume da câmara de combustão [m³] e V_{cil} é o volume do cilindro [m³].

Conforme Heywood (1988), motores ciclo Otto possuem taxas de compressão que podem ser de 8 a 12, enquanto motores ciclo Diesel de 12 a 24.

2.3 DINAMÔMETRO

As propriedades de funcionamento dos motores podem ser determinadas teoricamente, contudo, para comprovação das mesmas, o estudo experimental torna-se muito importante, permitindo caracterizar o motor individualmente. Para isso, torna-se necessária a utilização de equipamentos que imponham regimes específicos e informem parâmetros do funcionamento dos motores, sendo os dinamômetros os principais equipamentos utilizados para esse processo.

Conforme Brunetti (2012), os dinamômetros ou freios dinamométricos podem ser classificados como freio de Prony, dinamômetro hidráulico ou dinamômetro elétrico.

2.3.1 Freio de Prony

Segundo Brunetti (2012), o freio de Prony foi desenvolvido em 1821 pelo engenheiro Gaspard Prony. Este freio é um dispositivo composto por um volante rodeado de uma cinta, que é conectada a um braço, cuja extremidade se apoia sobre uma balança. Uma força de atrito é gerada ao apertar a cinta do freio sobre o volante, a qual restringe o seu movimento, transmitindo assim o esforço gerado ao braço apoiado sobre a balança. Este tipo de freio é utilizado para pequenas potências, devido a difícil dissipação de calor. A Figura 2 mostra a representação do freio de Prony.

Figura 2 - Representação do freio de Prony

Fonte: Adaptado de Giacosa (2000)

2.3.2 Dinamômetros hidráulicos

Nesses freios uma carcaça metálica estanque apoiada em dois mancais coaxiais com os mancais do eixo, fica livre para oscilar em torno de seu eixo, sendo esta carcaça equilibrada por uma célula de carga. O eixo do dinamômetro possuí um rotor composto por diversas conchas que são viradas para o sentido da rotação. Já na face interna da carcaça também são dispostas conchas iguais às do rotor, porém viradas no sentido oposto da rotação. O interior do dinamômetro é preenchido por água e no funcionamento o rotor impele água que entra na concha da carcaça tentando arrastá-la no sentido da rotação. Como a carcaça está presa, a água entra em movimento turbulento, transformando a energia hidráulica em calor e esforço torçor. Para remover o calor gerado, a água quente é drenada e água fria é introduzida no dinamômetro. Na saída do mesmo existe uma válvula de regulagem de fluxo, que mantém o nível e temperatura de água adequada dentro do dinamômetro (BRUNETTI, 2012).

A Figura 3 mostra a representação de um dinamômetro hidráulico de enchimento variável.

Figura 3 - Composição interna de um dinamômetro hidráulico de enchimento variável

Fonte: Adaptado de Martyr e Plint (2007)

2.3.3 Dinamômetros elétricos

Conforme Brunetti (2012), os dinamômetros elétricos podem ser do tipo de correntes parasitas (correntes de Foucault) ou mistos (de corrente alternada). O rotor do dinamômetro de correntes parasitas tem o formato de uma grande engrenagem composta de material de alta permeabilidade magnética. Os anéis solidários com o estator são fabricados de mesmo material e são separados por um pequeno espaço livre do rotor. No centro do estator está disposta uma bobina que é alimentada por corrente contínua, a qual, quando energizada gera um campo magnético que é concentrado nos dentes do rotor. Quando o rotor apresenta movimento gera correntes parasitas nos anéis que aquecem. O calor gerado é removido por água, que neste dispositivo atua como fluido de arrefecimento.

Dinamômetros mistos ou de corrente alternada são extremamente sensíveis e podem assumir configuração ativa, acionando assim o motor de combustão para estimar suas resistências passivas (denominadas como potência de atrito). Também podem funcionar como motores ou geradores. Permitem obter amplas variações de velocidades e potências absorvidas variando-se a alimentação do campo, que é de excitação independente, e do rotor.

2.3.4 Calibração do dinamômetro

Assim como equipamentos de medição, dinamômetros também possuem tolerâncias sobre os resultados informados, a maioria dos dinamômetros possui uma célula de carga instalada em sua carcaça que é responsável por medir a carga apresentada pelo banco. Braços com dimensões específicas são responsáveis por receber massas com pesos calibrados, conforme representado pela Figura 4, tornando possível o desenvolvimento de uma curva de calibração. Esta curva compara valores teóricos com os informados pela interface de controle do dinamômetro, permitindo o ajuste da célula de carga e quantificação dos erros de medição.

Figura 4 - Método para calibração de um dinamômetro com carcaça oscilante

Fonte: Adaptado de Schenck (2001)

2.4 CONSUMO DE COMBUSTÍVEL

2.4.1 Consumo específico em motores de combustão interna

Segundo Heywood (1988), o consumo específico de combustível mede quão eficientemente um motor está usando o combustível fornecido para produzir trabalho. O consumo pode ser descrito como a relação existente entre o consumo de combustível e a potência efetiva do motor, apresentada pela Equação (7).

$$C_e = \frac{\dot{m}_c}{P_e} \tag{7}$$

onde, C_e é o consumo específico de combustível [g/kWh], \dot{m}_c é a vazão mássica de combustível [g/h] e P_e é a potência efetiva do motor [kW].

A potência efetiva é medida em dinamômetro e o consumo de combustível é medido de diferentes maneiras, que podem ser gravimétrica ou volumétrica (BRUNETTI, 2012).

2.4.2 Medição volumétrica

Segundo Brunetti (2012), um frasco com volume interno calibrado pode ser enchido de combustível através do acionamento de uma válvula, quando o frasco é enchido, a válvula é fechada cessando a entrada de combustível. O frasco é interligado ao sistema de alimentação do MCI, onde este passa a funcionar com o combustível contido no frasco. Registra-se o tempo necessário para consumir o combustível do frasco e também o volume utilizado, tornando-se possível assim a determinação da vazão mássica de combustível, através da divisão do volume utilizado pelo tempo. A Figura 5 demonstra um medidor volumétrico de consumo de combustível.

Figura 5 - Medidor volumétrico para consumo de combustível

Fonte: Autor (2019)

2.4.3 Medição gravimétrica

Para Brunetti (2012), a medição mássica é mais vantajosa, pois leva em conta a variação na massa específica do combustível medido em um intervalo de tempo. O equipamento para medição mássica de combustível pode ser automatizado, de tal forma, que informe a massa do combustível consumido em um determinado intervalo de tempo, o qual pode ser variado através do ajuste dos parâmetros de funcionamento do equipamento. A Figura 6 apresenta a composição de um equipamento de medição gravimétrica.

Figura 6 - Medição gravimétrica do consumo de combustível

Fonte: Adaptado de Brunetti (2012)

2.5 COMBUSTÍVEIS

Combustível é toda substância capaz de reagir com o oxigênio e de liberar energia térmica. Uma das classificações mais utilizadas para os combustíveis é a adotada em função do seu estado físico, podendo ser sólido, líquido e gasoso. Os combustíveis orgânicos podem ser separados em naturais (fósseis) e artificiais, combustíveis esses, quando sólidos e líquidos, possuem grandes quantidades de substâncias químicas complexas. São compostos em sua totalidade por cinco elementos químicos, o carbono (C), hidrogênio (H), oxigênio (O), enxofre (S) e nitrogênio (N). Além disso, também podem possuir substâncias minerais não combustíveis, denominadas de cinzas e umidade (VLASSOV, 2001).

2.5.1 Propriedades dos combustíveis

A caracterização das propriedades dos combustíveis é importante em diversos aspectos, estas propriedades podem ser utilizadas para determinar informações simples, como o manuseio e armazenamento do combustível, até informações mais complexas, como indicativos sobre o desempenho da queima no MCI, ou o próprio dimensionamento do motor.

Segundo Brunetti (2012), as propriedades dos combustíveis variam em função dos teores de componentes utilizados em sua composição. Quando se necessita obter determinada característica para aplicação em um MCI, como por exemplo, a operação do mesmo em lugares com baixa temperatura ambiente, o entendimento sobre como a mistura afeta cada propriedade é muito importante, pois assim é possível saber se a aplicação será satisfatória ou não.

Existem diversas propriedades voltadas ao óleo diesel, uma das mais importantes é sua característica de autoignição nas pressões e temperaturas presentes no cilindro de um motor de ICO, quando o combustível é injetado. Essa característica é denominada de número de cetano (NC), o qual é determinado em laboratório, onde é comparada a tendência de ignição de um combustível com misturas de cetano e heptametilnonano. Combustíveis com altos NC apresentam baixos retardos de ignição e baixas quantidades de combustível na fase de combustão em pré-mistura (KNOTHE et al., 2006).

A densidade é a relação entre a massa e o volume de uma mistura em uma dada temperatura. Para que motores de ICO apresentem correto funcionamento, a densidade do combustível não deve possuir variações elevadas, pois estas podem influenciar na massa de combustível injetado, aumentando a potência e as emissões de particulados (BRUNETTI, 2012).

O poder calorífico (PC) é outra propriedade importante, que mede o calor liberado por unidade de massa de um combustível. Segundo Martins (2006), o PC é medido a partir do calor extraído durante a combustão. Combustíveis que contém hidrogênio produzem água, e essa pode aparecer no estado líquido ou em vapor nos gases de escape. Quando a água se apresenta no estado líquido, denomina-se o poder calorífico superior (PCS), e quando se encontra na forma de vapor, o poder calorífico inferior (PCI).

Segundo Brunetti (2012), a viscosidade é definida como o tempo apresentado pelo escoamento de um fluido, sob força da gravidade, em um tubo capilar com dimensões padronizadas, sendo apresentada em centistokes (cSt).

Algumas propriedades do combustível influenciam sua capacidade de lubrificação, conforme o Instituto Brasileiro de Petróleo (1982), baixas viscosidades podem diminuir propriedades lubrificantes, já altas viscosidades podem causar atomização deficiente, gotículas grandes e alta penetração do jato.

A Tabela 1 apresenta a comparação entre algumas propriedades em diferentes combustíveis.

Propriedades	Diesel	Álcool	Óleo de rícino
Massa específica [kg/L a 20°C]	0,88	0,79	0,967
Viscosidade [cSt a 37,7°C]	4,33	0,66	290
Poder calorífico inferior [kJ/kg]	42579	26795	36760

Tabela 1 - Propriedade dos combustíveis

Fonte: Peralta e Barbosa (2001)

2.5.2 Óleo diesel

O óleo diesel (OD) possui formulação que inclui várias correntes obtidas das unidades de destilação, podendo possuir frações de nafta pesada, nafta pesada de coque, querosene, diesel leve, diesel pesado, óleo leve de reciclo e gasóleos de coque. Óleo leve de reciclo e correntes de coque possuem teores de enxofre, compostos nitrogenados e compostos com oxigênio, além de percentuais de moléculas com duplas ligações (BRUNETTI, 2012).

O OD é classificado em função do seu teor de enxofre, podendo ser denominado de S1800, S500, S50 e S10. Além desta classificação, o óleo diesel pode ser do tipo A ou tipo B. Óleo diesel tipo A são aqueles derivados exclusivamente do processamento de petróleo e de gás natural, podendo possuir altos teores de enxofre (maiores que 1%). O óleo diesel tipo B também é produzido a partir do petróleo e do gás natural, porém possui acréscimos de biodiesel em sua composição, com teores estabelecidos por normas vigentes, e apresentam baixos teores de enxofre (menores ou iguais a 1%) (GARCIA, 2013).

Conforme Tabela 2, são expostas algumas características do OD com distintos teores de enxofre em sua composição.

Características	S1800	S500	S50	S10
Cinzas [% massa], máx.	0,010	0,010	0,010	0,010
Número de cetano, min.	42	42	46	48
Enxofre total [mg/kg], máx.	1800	500	50	10
Viscosidade [cSt a 40°C]	2,0 a 5,0	2,0 a 5,0	2,0 a 5,0	2,0 a 4,5
Massa específica [kg/L a 20°C]	0,82 a 0,88	0,82 a 0,865	0,82 a 0,85	0,82 a 0,85
Ponto de fulgor [°C]	38,0	38,0	38,0	38,0

Tabela 2 - Comparação entre óleos diesel com distintos teores de enxofre

Fonte: Garcia (2013)

O teor de enxofre é um dos principais problemas da queima do OD, pois este elemento químico é extremamente indesejado para o meio ambiente e componentes do motor. Devido à junção do trióxido de enxofre (SO₃) com água, decorrentes da combustão, ocorre a formação do ácido sulfúrico, que corrói partes metálicas do motor. Se concentrações de enxofre forem elevadas, as emissões de poluentes do tipo SO₂ são elevadas, trazendo grandes prejuízos para o meio ambiente (TEIXEIRA, 2012).

Segundo Brunetti (2012), a combustão do OD também emite óxidos de nitrogênio (NO_x – principalmente NO e NO_2), cujo formação é favorecida por altas temperaturas de combustão e na presença de oxigênio e MP.

2.5.3 Etanol

O etanol CH₃CH₂OH (ou álcool etílico) é uma substância orgânica obtida através da fermentação de amido e açúcares, também pode ser obtida de processos sintéticos, como a hidratação do etileno. Este combustível é menos tóxico que a gasolina e o OD (TEIXEIRA, 2012).

O etanol anidro (ou álcool etílico anidro) e o etanol hidratado (ou álcool etílico hidratado) possuem diferenças apenas em seus teores de umidade, onde o anidro possui um teor de umidade em torno de 0,5% e o hidratado até 5% em seu volume (UNICA, 2007 apud LORA e VENTURINI, 2012).

Conforme Lora e Venturini (2012), o etanol possui um poder calorífico inferior menor do que o do OD e da gasolina, com isso apresenta um consumo específico maior, entretanto, devido a maior octanagem apresentada em relação a gasolina, este combustível pode ser utilizado em motores com taxa de compressão elevada, traduzindo-se em um aumento de potência.

Em 1975, o governo brasileiro criou o Programa Nacional do Álcool (Proálcool), programa que surgiu devido necessidades econômicas, por causa da súbita elevação nos preços do petróleo, e para segurança energética do país (CORTEZ, 2016).

Com o decorrer deste programa, a utilização de etanol na mistura final da gasolina veio aumentando, chegando atualmente à proporção de 27,5%, compatível com as tecnologias empregadas em MCI flex. Segundo Bilhão (2015), durante a década de 1980 o etanol foi utilizado intensamente pela frota de veículos brasileiros, porém na década seguinte, devido ao aumento no custo de produção deste combustível, a utilização do mesmo tornou-se menos viável economicamente.

Dados da ANP (2018), através de seu anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis de 2018, demonstram que em 2017 a produção total de etanol nacional caiu 0,3%, totalizando 28,6 milhões de m³. A taxa média anual de crescimento da produção foi de 0,5% para o período de 2008-2017, estas variações na produção podem ser vistas na Figura 7.

Em contrapartida, a produção global de etanol no período de 2007 à 2016, saiu de 47000 para 100000 milhões de litros (*Renewable Fuels Association*, 2017 apud TELLI, 2018), apresentando tendências futuras de crescimento.

Figura 7 - Evolução da produção nacional de etanol hidratado e anidro - 2008-2017

2.5.4 Biodiesel

O biodiesel é um tipo de OD composto por álquil ésteres de ácidos graxos de cadeia longa derivados de gorduras animais ou de óleos vegetais. Sua produção consiste no decorrer de dois processos: o primeiro é um pré-tratamento, que visa remover os componentes insaponificáveis e gossipois do óleo vegetal ou do sebo que possam interferir no processo posterior ou na qualidade final do combustível; e o segundo processo é a transesterificação, que consiste em gerar uma reação entre os triglicerídeos do óleo pré-tratado e metanol, na presença de um catalisador (GARCIA, 2013).

O mercado de biocombustíveis adotou a expressão BXX para caracterizar misturas com biocombustíveis, sendo que o B significa biodiesel e XX a proporção do biocombustível misturado ao OD, exemplo, a sigla B2 significa que uma mistura apresenta 2% em volume de biodiesel derivado de fontes renováveis e 98% de OD. Assim, as composições das misturas podem variar até se obter 100% de biodiesel (B100) (PORTAL DO BIODIESEL, 2004).

Sendo um combustível biodegradável obtido de fontes renováveis, a utilização desse tipo de combustível se mostra promissora, políticas voltadas a sua utilização vêm demonstrando grandes evoluções. Conforme especificado pela lei número 13.576 de 26/12/2017, instituiu-se o programa RenovaBio. Este programa objetiva traçar estratégias em vista do reconhecimento do papel estratégico de todos os biocombustíveis na matriz energética brasileira, tanto para a redução de emissões de gases poluentes como para a segurança energética do país.

Conforme exposto pela ANP (2018), a produção de biodiesel no Brasil vem crescendo ao longo dos anos, este crescimento pode ser visto na Figura 8.

Fonte: ANP (2018)

Figura 8 - Evolução da produção de biodiesel (B100) no Brasil - 2008-2017

Uma das grandes vantagens da utilização do biodiesel é a sua adaptabilidade aos motores de ICO, podendo substituir parcialmente ou totalmente o OD derivado do petróleo. Também por ser renovável, reduz a dependência da utilização do petróleo, é biodegradável, reduz as emissões da maioria dos poluentes, possui excelente capacidade de lubrificação e alto ponto de fulgor. Porém, também apresenta desvantagens, tal como preço mais elevado, propriedades adversas de escoamento a frio, baixa estabilidade quando exposto ao ar e aumento das emissões de NO_x (TEIXEIRA, 2012).

A Tabela 3 apresenta algumas características físicas de óleos vegetais empregados para a produção de biodiesel.

Coractorísticos	Tipo de óleo						
Características	Amendoim	Soja	Algodão	Girassol	Babaçu	Dendê	Mamona
Densidade rel. [kg/L]	0,919	0,920	0,919	0,923	0,921	0,915	0,959
Viscosidade cin. [cSt]	38	36	40	37	32	39	297
Início de destilação [°C]	173	152	-	211	-	-	-
Resíduo de carbono [kg]	0,42	0,45	0,42	0,42	0,22	-	0,18
Número de cetano	33	36	40	39	38	42	-
PCI [kJ/kg]	36967	35700	36650	36037	35434	38090	34903
Água por destilação [%]	<0,05	<0,08	<0,05	<0,05	<0,05	-	0,20
Ponto de névoa [°C]	19	13	9	-	26	-	-
Enxofre [%]	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1

Tabela 3 - Características físicas de óleos vegetais

Fonte: Araújo et al. (2002)

2.5.5 Óleo de mamona

A mamona (Ricinus communis L.) é uma planta originária de clima tropical, com elevada capacidade de resistência a seca, por isso adequa-se muito bem a regiões do semiárido brasileiro (SANTOS, 2006). A partir da semente da mamoneira é obtido o óleo de mamona (OM), também conhecido como óleo de rícino.

O OM é um glicerídeo solúvel em álcool em temperatura ambiente, sendo que os demais óleos vegetais necessitam ser aquecidos a uma temperatura superior a 70 °C para serem solúveis no álcool. Este óleo é mais denso e viscoso que os demais óleos vegetais, possuindo mais oxigênio em sua molécula (BELTRÃO, 2003).

A semente da mamona possui de 47 a 49% de óleo. O ácido ricinoléico é o principal constituinte do óleo, apresentando também em sua estrutura grupos funcionais reativos, sendo o grupo carbonila no 1° carbono; a insaturação no 9° carbono; e o grupo de hidroxila no 12° carbono. Estes grupos funcionais fazem com que o OM possa ser submetido a diversos processos químicos com a obtenção de variados produtos para aplicações industriais (CONCEIÇÃO et al., 2007).

Nas décadas de 1970 e 1980, a utilização da mamona ganhou destaque em função da possibilidade de substituição dos derivados do petróleo, onde foram descobertas inúmeras aplicações industriais para o OM, podendo ser aplicado em tintas, vernizes, impermeabilizantes de superfície, cosméticos, lubrificantes e fluidos hidráulicos (FREITAS e FREDO, 2005).

A lubricidade do OM é 30% maior que a dos demais óleos, podendo substituir em 100% o enxofre no OD mineral. O comportamento do OM ao ser transformado em biodiesel é de um combustível e comburente ao mesmo tempo, assim é muito menos poluidor para atmosfera, quando comparado ao OD mineral derivado do petróleo (GALVÃO, 2007).

O Brasil demonstra grande empregabilidade de oleaginosas para produção de biodiesel, sendo possível devido as suas diversidades de ecossistemas e climas. O subproduto da extração do OM é a torta, seu principal uso se dá em adubos orgânicos, pois como é um produto com baixo valor agregado, e por possuir ricina e princípios alergênicos, não é indicado para a alimentação animal (ABDALLA et al., 2008).

A Tabela 4 apresenta a produtividade da espécie de mamona no Brasil. Quando comparada a outras espécies oleaginosas, a mamona pode fornecer maiores teores de óleo passiveis de extração.

Regiões	Ciclo [dias]	Teor de óleo	Produtividade
produtoras		[%]	[kg·ha ⁻¹ ·ano ⁻¹]
S	130/140	38	1800
S,SE,CO	90/140	42	1600
S,SE,CO	100/300	44	1500
S,SE,CO	120	19	2200
	Regiões produtoras S S,SE,CO S,SE,CO S,SE,CO	Regiões produtorasCiclo [dias]S130/140S,SE,CO90/140S,SE,CO100/300S,SE,CO120	Regiões produtoras Teor de óleo [%] S 130/140 38 S,SE,CO 90/140 42 S,SE,CO 100/300 44 S,SE,CO 120 19

Tabela 4 - Produtividade de algumas culturas com potencial para produção de biodiesel

Fonte: BIODIESEL BR, 2011 apud TEIXEIRA, 2012

2.6 TRABALHOS NA ÁREA

Turmina (2018) avaliou a operação de um motor de ignição por compressão (ICO) da marca Agrale, modelo M90, acoplado a um gerador elétrico, com uma rotação constante e frequência de energia gerada de 60 Hz. O motor foi ajustado com duas configurações de taxa de compressão e dois pontos de injeção. O motor operou com os diferentes ajustes em modo mono combustível, óleo diesel (OD), e em modo bicombustível, misturas de etanol hidratado (ETH) e óleo de mamona (OM). As amostras de combustível tiveram suas propriedades caraterizadas e foram preparadas em quatro proporções em volume de ETH-OM, sendo 75% - 25%; 70% - 30%; 60% - 40%; e 50% - 50%.

Os resultados obtidos por Turmina (2018) demonstraram que o índice de emissões de CO diminuiu cerca de 57%, os NO_x em 19% e o CO₂ baixou em 4%, entretanto, houve um aumento, em torno de 25,4%, nas emissões de HC com o aumento de OM na mistura. O consumo específico das misturas aumentou em relação ao do OD. O percentual de opacidade tendeu a diminuir, próximo a zero, com a adição de ETH. As misturas apresentaram menores temperaturas nos gases de escape, minimizando perdas térmicas excessivas. O autor também concluiu que o melhor resultado em relação a eficiência energética do grupo motor-gerador foi alcançado com o maior percentual de ETH na mistura (ETH75-OM25), chegando a ser 9% maior que a do OD. Também, constatou que a operação do motor com OD é mais estável e apresenta maior potência em relação ao obtido com as misturas, porém, se aumentada a TC e atrasado o PI, é possível obter valores de potência próximos ao do OD, na mistura com maior porcentagem de ETH.

Guimarães et al. (2017) avaliaram o desempenho de um motor estacionário de ciclo diesel, monocilíndrico, de quatro tempos, com potência nominal de 5,7 kW a 3000 rpm, acoplado a um gerador elétrico trifásico. Misturas de biodiesel de soja (BS) e biodiesel de mamona (BM), nas proporções de BS100-BM0; BS75-BM25; BS50-BM50; BS25-BM75 e

BS0-BM100, foram misturas ao óleo diesel (OD) comercial B7 para obter misturas de B25; B40; B50; B75 e B100. Em especial, os resultados obtidos por Guimarães et al. (2017) na condição de 100% de BM demonstram que a viscosidade, 8,96 cSt, não atendeu padrões da ANP n° 45/2014, porém ao ser adicionado BS ao BM a viscosidade diminuiu, podendo ser atingidos os valores padrões, o que ocorreu também com misturas de BM e OD. Foi constatado que as menores emissões de MP são oriundas de misturas com maiores proporções de BM, a mistura B40 com 100% de BM apresentou uma redução de 77% do MP em relação ao OD.

Cortez et al. (2018) avaliaram o desempenho de um motor estacionário com potência nominal de 5,7 kW a 3000 rpm, nas rotações de 3000; 2700; 2400; 2100; 1800 e 1500 rpm, com as diferentes proporções de misturas abordadas por Guimaraes et al. (2017). Através dos testes realizados, Cortez et al. (2018) concluíram que o comportamento das curvas de desempenho é semelhante para os diferentes combustíveis utilizados. Na rotação de 3000 rpm, o óleo diesel apresentou potência efetiva observada e torque superiores aos das misturas, porém nas demais rotações as misturas apresentaram potência superior, promovendo resultados satisfatórios de desempenho médio para o B40 com BS100-BM0 e o B40 com BS75-BM25.

Vanzella (2015) avaliou as propriedades físico-químicas de misturas de etanol (ETH) e biodiesel de mamona (BM), onde preparou 4 misturas com porcentagens em massa, sendo 99% - 01%; 97% - 03%; 95% - 05%; e 90% - 10%. Com as avaliações constatou que o poder calorífico de todas as misturas aumentou, a viscosidade das misturas variou com a adição de biodiesel de mamona, onde a mistura ETH90-BM10 apresentou um aumento de 23,8% em relação a viscosidade do etanol, sendo de 2,112 cSt. O ponto de fulgor obteve melhora de quase 1 °C na mistura com 10% de biodiesel de mamona. A densidade das misturas se mostrou dependente do percentual de água no etanol, sendo 0,8123 kg/L para a mistura ETH99-BM01 e 0,8225 kg/L para ETH90-BM10.

Pinzi et al. (2018) avaliaram as propriedades envolvendo misturas de óleo de mamona, etanol hidratado e óleo diesel com baixos teores de enxofre. Com estes três combustíveis, os autores prepararam e analisam 16 amostras com porcentagens em volume variadas. O volume total, 100%, de cada amostra foi obtido com a mistura de todos os combustíveis, podendo estas apresentarem porcentagens; de 30%, com acréscimos de 5%, até 50% de OM; de 30%, com acréscimos de 5%, até 30% de OD.

Os autores observaram que o OM aumenta a solubilidade e a estabilidade das misturas, pois o grupo de hidroxila do ácido ricinoléico do óleo de mamona mostra afinidade com o grupo polar OH do ETH, também viram que a presença de etanol reduz a viscosidade da mistura. Otimizações realizadas visaram a proporção ideal dos combustíveis para uma mistura atender as necessidades de aplicação em motores de ignição por compressão, os resultados obtidos, sendo de OM30-ETH41,4-OD28,6, foram validados experimentalmente através da determinação das propriedades da mistura. Segundo Pinzi et al. (2018), a mistura ideal cumpriu grande parte dos limites expostos pela DIN EN 590, sendo esta uma mistura adequada para aplicações automotivas e de geração de energia. Entretanto, devido aos teores de água no etanol, recomendaram ajustes na configuração de injeção, fornecimento de ar e aumento da taxa de compressão dos motores de ICO. Isso para tentar superar características de autoignição, pelo fato da mistura definida apresentar menor índice de cetano (37,07) em relação ao limite da DIN EM 590 (limite >46).

Prakash et al. (2018) avaliaram um motor monocilíndrico de ciclo diesel, de quatro tempos, com potência de 5,2 kW a 1500 rpm e taxa de compressão de 17,5:1. Este motor foi acoplado a um dinamômetro de corrente parasitas e avaliado com cargas variadas e rotação constante de 1500 rpm. As avaliações foram separadas em etapas, sendo que em uma etapa o motor funcionou individualmente com óleo diesel (OD) e óleo de mamona (OM) puros, onde foram monitorados dados de desempenho e emissões.

Em outra etapa foram produzidas misturas com três combustíveis, óleo diesel; óleo de mamona e bioetanol (BE), em diferentes proporções de volume, sendo estas, OD30-OM60-BE10; OD30-OM50-BE20 e OD30-OM40-BE30. Estas misturas foram avaliadas no motor, onde Prakash et al. (2018) constataram que, em carga máxima, o atraso de ignição das misturas foi maior do que o do OD. A duração da combustão das misturas foi maior que a do OD, principalmente no funcionamento com OM, este aumento está relacionado a viscosidade, melhor atomização e a natureza dos biocombustíveis, devido a presença de oxigênio em sua estrutura.

A temperatura dos gases de escape em carga plena com a utilização do OM foi maior do que a do OD, cerca de 8,5%, porém, ao adicionarem BE a diferença de temperatura tendeu a diminuir. Também em carga plena, a emissão específica de NO_x foi de 5,21 g/kW para o óleo de mamona, o óleo diesel apresentou emissão de 8,17 g/kW, ao ser adicionado bioetanol na mistura, a emissão de NO_x aumentou em relação a do óleo de mamona, contudo, ficou abaixo a do óleo diesel. Essa tendência também foi vista pelos autores em cargas parciais do funcionamento do motor. Em carga plena, as emissões de CO do óleo de mamona foram maiores do que as do óleo diesel. Em cargas parciais, as misturas apresentaram menores emissões de CO em relação as do óleo de mamona. O óleo de mamona gerou maiores emissões de HC em comparação ao óleo diesel, no entanto, as misturas tenderam a reduzir as emissões, mas, continuaram maiores do que as emitidas pelo óleo diesel.
Vailatti et al. (2017) realizaram testes em um motor da marca Agrale, modelo M90, acoplado a um gerador elétrico, com rotação constante de 1800 rpm. O motor operou com distintos combustíveis, óleo diesel (OD); misturas de etanol hidratado (ETH) e óleo de mamona (OM); e misturas de OD-ETH-OM, com baixas proporções de OM. As misturas foram preparadas, com porcentagem em volume dos distintos combustíveis, sendo nas proporções de ETH90-OM10; ETH80-OM20; ETH75-OM25; OD90-ETH09-OM01; OD80-ETH18-OM02; OD70-ETH27-OM03; OD60-ETH36-OM04; e OD50-ETH45-OM05.

Os resultados obtidos pelos autores, em especial para as misturas de etanol hidratado e óleo de mamona, demonstram que a potência corrigida resultante do motor foi de 5,5 kW, próxima a potência obtida no funcionamento com óleo diesel, a qual foi de 5,6 kW. Em relação ao óleo diesel, a temperatura dos gases de escape reduziu 17,4% quando o motor operou com a mistura ETH80-OM20, também, no funcionamento com esta proporção de mistura, a opacidade obtida foi de 2,6%, extremamente menor do que a obtida no funcionamento com óleo diesel, que foi de 43,7%.

Vailatti et al. (2017) também constataram que, no funcionamento com as misturas de etanol hidratado e óleo de mamona, a eficiência térmica do grupo gerador diminuiu 7,5% em relação a obtida com o óleo diesel, nesta condição o consumo específico aumentou em 35,7%, fator relacionado ao menor poder calorífico apresentado pela mistura.

3 MATERIAIS E MÉTODOS

O trabalho realizado propôs a avaliação, do desempenho e das emissões, de um motor ciclo diesel operando em modos mono e bicombustível. A análise de desempenho foi baseada em dados experimentais, que foram obtidos com o funcionamento do motor em dinamômetro. Os níveis de emissões foram analisados através de medições experimentais com equipamentos específicos, os quais foram realizados no período de funcionamento do motor. Os ensaios com o motor foram realizados no Laboratório de Motores da empresa Agrale SA, localizada em Caxias do Sul.

De forma simplificada, o trabalho seguiu as etapas expostas pelo fluxograma ilustrado na Figura 9.

Figura 9 - Fluxograma com as etapas do trabalho

Em uma primeira etapa, foi realizada a identificação e caracterização dos combustíveis utilizados nos ensaios: o OD S10 (até 10 ppm de enxofre) com 11 % de biodiesel e o ETH, que foram adquiridos em um posto de combustível; o OM in natura foi adquirido em um estabelecimento comercial voltado a venda de diferentes produtos químicos. A caracterização das propriedades dos combustíveis foi realizada em relação a densidade, viscosidade e poder calorífico. Com o ETH e o OM foram realizadas misturas, que tiveram suas propriedades caracterizadas. Foram buscadas misturas que possuíssem propriedades próximas as do óleo diesel, especialmente a viscosidade, para um melhor funcionamento do motor.

Posteriormente, foi realizada a instalação do motor diesel no dinamômetro para avaliação com distintas condições de carga. O motor operou no modo monocombustível (OD)

e bicombustível (misturas ETH-OM) com diferentes ajustes mecânicos: ponto de injeção e taxa de compressão.

A Figura 10 ilustra esquematicamente o arranjo experimental que foi montado para a execução dos ensaios.

Figura 10 - Esquema de montagem do experimento

3.1 PARÂMETROS DE OPERAÇÃO DO MOTOR

As alterações mecânicas no motor Agrale M93ID, utilizado nos ensaios experimentais (vide seção 3.3.1), foram referentes as alterações da taxa de compressão (TC) e ponto de injeção (PI), onde foram configuradas duas propostas de cada parâmetro para avaliação. Desta forma, os ensaios foram realizados com ajustes de fábrica no motor, que são TC de 20,0:1 e PI de 17° APMS. Outros ensaios foram realizados, que foram com TC de 20,0:1 e PI de 10° APMS; TC de 21,5:1 e PI de 10° APMS; e TC de 21,5:1 e PI de 17° APMS.

Desta forma, os ensaios foram realizados segundo condições de operação do motor identificadas na Tabela 5.

Nomenclatura do ensaio	Descrição do ensaio
TC20-PI10	Taxa de compressão 20,0:1 e ponto de injeção 10° APMS
TC20-PI17	Taxa de compressão 20,0:1 e ponto de injeção 17° APMS
TC21.5-PI10	Taxa de compressão 21,5:1 e ponto de injeção 10° APMS
TC21.5-PI17	Taxa de compressão 21,5:1 e ponto de injeção 17° APMS

Tabela 5 - Nomenclaturas dos ensaios experimentais

Fonte: Autor (2019)

3.1.1 Definição da taxa de compressão

A taxa de compressão do motor Agrale M93ID pode ser alterada através da junta do cabeçote, a qual apresenta espessura calibrada. Ao ser aumentada a espessura da junta, ocorre a diminuição da taxa de compressão, ao contrário, se diminuída a espessura, ocorre o aumento da taxa de compressão.

No cilindro do motor, foi realizada a instalação de um dispositivo e, entre o dispositivo e o cilindro, foi instalada uma junta do cabeçote, conforme apresentado na Figura 11. O dispositivo possui um relógio comparador, que é capaz de medir a folga entre as faces, superior do pistão e superior da junta do cabeçote, quando o pistão apresentar-se em ponto motor superior (PMS), onde foi ajustado manualmente através do giro do volante do motor.

Figura 11 - Verificação da folga na câmara de combustão com o pistão no PMS

Fonte: Agrale (2019)

A folga total do conjunto foi utilizada para a determinação do volume da câmara de combustão, que serviu para a determinação da taxa de compressão, calculada conforme Equação (6), (vide seção 2.2.5).

O ajuste das taxas de compressão, definidas para os ensaios, foi realizado através do procedimento descrito, com a utilização de uma junta do cabeçote com espessura de 0,8 mm para ajustar a taxa de compressão em 20,0:1 e com uma junta com espessura de 0,6 mm para ajustar a taxa de compressão em 21.5:1.

3.1.2 Definição do ponto de injeção

O ponto de injeção do motor Agrale M93ID é alterado através de juntas metálicas, com espessuras calibradas, instaladas entre a bomba injetora e sua face de fixação no bloco do motor. Assim, se for aumentada a espessura das juntas, ocorrerá o atraso no ponto de injeção, ao contrário, se for diminuída a espessura das juntas, ocorrerá o avanço do ponto de injeção.

No bloco do motor, na região ao redor do volante do motor, foi instalado um dispositivo graduado com demarcações de 30° APMS à 30° DPMS. O arco graduado foi fixado, de tal forma, que o ponto de referência (0°) ficou alinhado com uma marcação no volante do motor, que é disposta no momento que o pistão se encontrava em PMS.

Na saída de combustível da bomba injetora, foi instalado um tubo para verificação da saída do combustível. Com o tubo instalado, a bomba injetora foi sangrada (processo para remoção do ar presente em seu interior) e, manualmente, foi rotacionado o volante do motor até que se observou a saída de combustível pelo tubo, o qual apresentava-se pressurizado devido à presença de uma bomba manual interligada no duto de alimentação da bomba injetora. Desta forma, foi possível determinar o ponto de injeção do motor através do alinhamento da marcação do volante do motor com o arco graduado. A Figura 12 ilustra o dispositivo graduado fixado no bloco do motor e o sistema de alimentação da bomba injetora.

Figura 12 - Dispositivos para ajuste do ponto de injeção

Fonte: Autor (2019)

O ajuste do ponto de injeção foi realizado através do procedimento descrito, com a utilização de juntas metálicas calibradas, de modo que, uma junta com espessura de 0,3 mm foi

utilizada para ajustar o PI em 17° APMS e combinações de juntas, totalizando a espessura de 1,3 mm, para o PI de 10° APMS.

3.2 PROCEDIMENTOS EXPERIMENTAIS

A execução dos ensaios experimentais no motor adotou o mesmo critério para as distintas frações de misturas determinadas. O motor avaliado possui faixa de operação que varia de 800 a 3000 rpm, sendo que esse intervalo de rotação contempla as rotações de torque máximo e potência máxima, ou seja, 39 N·m em 2350 rpm e 10,8 kW em 2750 rpm, respectivamente. Para tanto, foram conduzidos ensaios que visaram englobar as principais rotações de funcionamento do motor, onde os testes foram realizados a partir da rotação de 2750 rpm, com variação de 150 em 150 rpm, até atingir a rotação de 1700 rpm, o que totalizou 8 intervalos experimentais.

Foi utilizado um motor novo para os ensaios experimentais. Previamente aos ensaios, o motor passou por um período de funcionamento de 10 horas no dinamômetro Schenck W130 para amaciamento, neste período foi imposta uma carga capaz de extrair metade da potência máxima do motor. As avaliações experimentais seguiram a norma NBR ISO 1585, a qual especifica os métodos de ensaios para motores destinados a veículos automotores. Assim sendo, foi ajustado o desempenho do motor, a plena carga, em função da rotação do motor.

O estudo previu ensaios do motor com os diferentes pontos de injeção e taxas de compressão, assim os ensaios foram realizados com as diferentes configurações definidas. Devidamente acoplado na bancada dinamométrica, o motor foi instrumentado para medições, além de rotação e carga, de consumo de combustível, de temperaturas e emissões nas distintas condições de operação. Assim, os ensaios foram conduzidos seguindo alguns procedimentos descritos:

a) Com os valores originais de taxa de compressão e ponto de injeção, a partida do motor foi realizada de forma que o mesmo funcionou em marcha lenta, apenas no modo monocombustível, com óleo diesel. Através da movimentação até o fim de curso da alavanca de aceleração da bomba injetora, o motor foi submetido a rotação máxima livre (2950 rpm). Nesta condição de rotação, foi imposta uma carga suficiente para atingir a potência máxima do motor, desta forma, o mesmo funcionou por um período suficiente para ocorrer a estabilização da temperatura do óleo lubrificante.

- b) Com a temperatura do óleo lubrificante estabilizada, inicialmente foi realizado o levantamento de desempenho do motor na rotação de potência máxima (2750 rpm). O levantamento de desempenho foi realizado através da verificação da rotação, torque e potência, cujos valores foram informados no supervisório do dinamômetro (computador). Após, o consumo de combustível foi determinado através da medição da variação de massa do combustível em um intervalo de tempo, concluída esta medição, foi realizada a verificação do índice de fumaça proveniente do escapamento do motor. A etapa de análise foi concluída com a medição dos gases de escape, utilizando-se um analisador de gases da marca AVL.
- c) Após ter sido realizado o primeiro levantamento, a rotação do motor foi reduzida em 150 rpm através do aumento de carga imposta pelo dinamômetro. Nesta nova rotação de funcionamento, foram repetidos os levantamentos descritos no item b e, quando concluídos, a rotação do motor foi reduzida novamente para que um novo levantamento fosse realizado. Os levantamentos foram realizados até a rotação de 1700 rpm.
- d) No funcionamento bicombustível (misturas ETH-OM) o motor seguiu as etapas de avaliação descritas pelos itens b e c, onde foram realizados levantamentos com todas as misturas definidas.
- e) A coleta de informações foi repetida duas vezes para minimização de erros, ou seja, cada ensaio foi executado duas vezes.

3.3 EQUIPAMENTOS UTILIZADOS

3.3.1 Motor

O motor de combustão interna utilizado nos testes experimentais é da fabricante Agrale S/A, modelo M93ID. Este motor possui diversas configurações e suas principais aplicações comerciais são voltadas para equipamentos agrícolas, construção civil, grupos geradores, moto bombas e tratores agrícolas de pequeno porte.

O sistema de injeção de combustível do motor possui uma bomba injetora, uma válvula injetora e regulador de velocidade interno. Para a execução dos ensaios de desempenho a bomba injetora foi configurada em curva F, configuração veicular. As principais características do motor são descritas na Tabela 6.

Características	Especificação
Número de cilindros/disposição	1 - Vertical
Potência a 2750 rpm	14,7 cv (10,8 kW)
Ciclo	Diesel 4 tempos
Diâmetro x Curso do êmbolo	90 x 105 mm
Deslocamento volumétrico	668 cm ³
Taxa de compressão	20,0:1
Sistema de injeção	Direta Bosch
Ponto final de injeção	17° APMS
Pressão de injeção	180 a 188 bar
Consumo específico	240 g/kWh a 2100 rpm
Arrefecimento	A ar

Tabela 6 - Características do motor Agrale M93 ID

Fonte: Adaptado de Lintec (2019)

3.3.2 Banco de ensaios

A sala dinamométrica utilizada para os ensaios de desempenho do motor possui um dinamômetro elétrico do tipo correntes de Foucault da marca Schenck, modelo W130 -130 kW. O dinamômetro possui um sistema de aquisição eletrônica de dados com incerteza de medição de rotação de \pm 10 rpm. A partir do centro do dinamômetro, um braço de alavanca com comprimento de 0,310 m possui em sua extremidade uma célula de carga da marca KRATOS, modelo KCC, com capacidade de força de 490 N e incerteza aproximada de < 0,2%, a qual é responsável por medir a carga imposta pelo dinamômetro no processo de frenagem do motor. A Figura 13 ilustra a instalação do dinamômetro.

Figura 13 - Dinamômetro Schenck W130-130 kW

Fonte: Autor (2019)

O calor gerado pelo dinamômetro no processo de frenagem do motor é dissipado por um sistema de arrefecimento a água, a qual não participa da frenagem do motor.

O dinamômetro possui um supervisório para controle e acompanhamento de seu funcionamento e do motor, conforme ilustrado na Figura 14. Neste supervisório foi possível variar a carga imposta no motor, monitorando a rotação, torque e, de consequência, a potência, além da visualização de temperaturas instrumentadas no motor.

Figura 14 - Supervisório do dinamômetro Schenck W130-130 kW

3.3.3 Medição do consumo de combustível

A medição do consumo de combustível foi realizada através da pesagem do combustível. Um reservatório com capacidade volumétrica de 20 litros foi abastecido com combustível, estando uma parte superior do mesmo aberta para a atmosfera. O reservatório foi conectado à bomba injetora do motor por meio de uma tubulação de 8 mm de diâmetro interno.

O reservatório foi suspenso, acima do motor, por uma célula de carga da marca HBM, modelo U2B, com capacidade de força de 980 N e incerteza aproximada de < 0,2%. A célula de carga foi interligada a um equipamento de aquisição de dados da marca HBM, modelo Quantum MX840A, que foi controlado através do *software Catman Easy* - AP 3.5. Durante o funcionamento do motor com as distintas condições de carga, por um período, foi realizada a aquisição da massa do combustível. A variação de massa resultante do intervalo de medição serviu para determinar a vazão mássica de combustível, conforme Equação (8).

$$\dot{m}_c = \frac{m_i - m_f}{t} \cdot 3600 \tag{8}$$

onde, \dot{m}_c é a vazão mássica de combustível [g/h], m_i é a massa inicial de combustível [g], m_f é a massa final de combustível [g], e *t* é o tempo de medição [s].

3.3.4 Medidor do índice de fumaça

O equipamento utilizado para a determinação do índice de fumaça foi do fabricante AVL, modelo *Smoke Meter* 409D2, o qual possui faixa de medição de 0,0 a 9,0 UB (Unidade Bosch; SZ-Bosch). A resolução do equipamento é de 0,1, apresentando incerteza de medição de 2% para a faixa de medição de 0,6 a 5,0 SZ-Bosch, sem variação de temperatura, que pode ser de 0 a 50 °C.

O equipamento possui um duto, que faz a interligação do sistema de exaustão por onde circulam os gases de escape do motor, com seu dispositivo de medição. Uma bomba disposta no interior do equipamento, faz com que uma amostra de gás de escape seja direcionada para um filtro de papel, que se escurece com a passagem da amostra de gás. O equipamento direciona um feixe de luz para o papel escurecido. Tal equipamento realiza a leitura do índice de fumaça conforme a refletância da luz pelo papel, que pode ser visualizada de forma analógica no display do equipamento. A Figura 15 apresenta o analisador de fumaça.

Figura 15 - Medidor de índice de fumaça AVL Smoke Meter 409D2

3.3.5 Analisador de gases

O equipamento utilizado para a medição das emissões provenientes do motor foi do fabricante AVL, modelo DiCom 4000. Para a determinação do O₂ e NO, o princípio de medição

Fonte: Autor (2019)

do equipamento se dá através de processos eletroquímicos, já para o HC, CO e CO₂, a medição é realizada através da detecção do comprimento de onda no espectro infravermelho.

A temperatura de operação é de 1 a 50 °C, com umidade máxima de 90%. As faixas de medição, assim como a resolução das mesmas são reportadas na Tabela 7.

Variável	Faixa de medição	Resolução
O ₂	0 - 4%	0,01%
NO/NO _x	0 - 4000 ppm	1 ppm
HC	0 – 20000 ppm	1 ppm
CO	0 - 10%	0,01%
CO ₂	0 - 20%	0,1%

Tabela 7 - Especificações do analisador de gases AVL DiCom 4000

Fonte: Autor (2019)

Nos ensaios foi realizada a medição do CO, CO₂, HC e NO_x.

3.3.6 Densímetro

As densidades dos combustíveis e das misturas foram determinadas através da utilização de densímetros para a medição de petróleo e seus derivados líquidos, do fabricante Incoterm, conforme apresentado na Figura 16. As medições foram realizadas no Laboratório de Motores da Agrale S/A, o qual dispõe de densímetros para medição de massa específica das faixas de: 0,700 a 0,750 g/ml; 0,750 a 0,800 g/ml; 0,800 a 0,850 g/ml; 0,850 a 0,900 g/ml; 0,900 a 0,950 g/ml; e 0,950 a 1,000 g/ml.

Figura 16 - Densímetros Incoterm para medição de petróleo e seus derivados líquidos

Fonte: Autor (2019)

As medições de viscosidade dos combustíveis e das misturas foram realizadas com a utilização de um reômetro da marca Anton Paar, modelo physica mcr 301, com geometria coneplaca. Os ensaios foram realizados no laboratório de Polímeros da UCS, que dispõe deste equipamento.

3.3.8 Sensor de temperatura

As medições de temperatura foram realizadas com a utilização de termopares do tipo K (Cromel/Alumel), que apresentam faixa de operação de -270 a 1372 °C, diferença de potencial entre -6,458 e 54,886 mV e incerteza de medição de \pm 2,2 °C (OMEGA, 2019).

Os termopares foram utilizados para a medição de temperatura dos seguintes pontos: óleo lubrificante do motor; ar na entrada do coletor de admissão; gases de escape na saída do coletor de escape; e ambiente (bulbo seco e bulbo úmido). Através do sistema de aquisição eletrônica do dinamômetro, as medições foram realizadas e informadas em seu supervisório.

3.3.9 Bomba calorimétrica

Para a medição do poder calorífico dos combustíveis, foi utilizada uma bomba calorimétrica do fabricante Isoperibol. Os ensaios foram realizados no laboratório de ensaio de combustíveis da CIENTEC, Fundação de Ciência e Tecnologia do RS. O teste para a determinação do poder calorífico, seguiu a norma ASTM: D4809-13 (*Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter - Precision Method*).

3.3.10 Medições meteorológicas

Para a medição de parâmetros meteorológicos, os quais serão utilizados para os procedimentos de cálculo para a correção do desempenho do motor, foi utilizada uma miniestação meteorológica do fabricante Kestrel, modelo 4000, demonstrada pela Figura 17. Esta miniestação incorpora um barômetro, com faixa de operação de 10 a 1100 mbar, resolução de 0,1 mbar e incerteza de medição de \pm 1,5 mbar. Também possui a medição da umidade relativa, com faixa de operação de 0 a 100%, resolução de 0,1% e incerteza de \pm 3%.

Figura 17 - Miniestação meteorológica Kestrel, modelo 4000

Fonte: Autor (2019)

3.3.11 Buretas graduadas

Para a caracterização das misturas através da fração volumétrica de cada combustível, foram utilizados os seguintes recipientes para medição: pipeta volumétrica do fabricante Pirex, com capacidade de 25 ml e divisão de 0,1 ml; copo *Beaker* do fabricante Normax, com capacidade de 1800 ml e divisão de 100 ml; e proveta graduada de base sextavada do fabricante Vidrolabor, com capacidade de 2000 ml e divisão de 20 ml. A Figura 18 mostra os recipientes para medição dos volumes.

As misturas foram formadas em recipientes plásticos com capacidade volumétrica de 20 litros. A fração volumétrica de cada combustível foi inserida no reservatório, e através do processo de agitação, foram solubilizadas.

Figura 18 - Recipientes graduados para medições volumétricas

Fonte: Autor (2019)

3.4 CORREÇÃO DOS RESULTADOS DE POTÊNCIA

Pelas diferenças de pressão do ar atmosférico, maiores altitudes terão menores pressões atmosféricas, por consequência, menores quantidades de oxigênio. Com o ar rarefeito o desempenho diminuirá, para motores com sistema de injeção mecânica de combustível, a injeção não sofre correções em função da altitude, ocasionando uma combustão incompleta. Motores com sistema de injeção eletrônica de combustível possuem sistemas de gerenciamento, capazes de identificar a pressão atmosférica e o volume de ar na admissão, desta forma ajustam a quantidade de combustível injetado, minimizando perdas de desempenho em função da altitude de operação.

Assim torna-se necessária a correção dos valores de desempenho dos motores de combustão para condições de referência padrão: temperatura do ar de 298 K (25 °C) e pressão seca de 99 kPa. A norma NBR ISO 1585, a qual é relacionada aos ensaios e as declarações de potência de motores de combustão interna, descreve as condições de referência padrão, e estabelece equações para a realização de correções dos resultados obtidos em medições fora da referência padrão.

Desta forma, a norma prescreve o ajuste de potência líquida efetiva para motores aspirados, ou seja, sem turbocompressor, através das Equações (9), (10), (11) e (12).

$$P_c = \alpha \cdot P_m \tag{9}$$

$$\alpha = (f_a)^{f_m} \tag{10}$$

$$f_a = \left(\frac{99}{p_d}\right) \cdot \left(\frac{T}{298}\right)^{0,7} \tag{11}$$

$$f_m = 0,036 \ q_c - 1,14 \tag{12}$$

onde, P_c é a potência corrigida [W], P_m é a potência medida em dinamômetro [W], α é o fator para ajuste de potência, f_a é o fator atmosférico, f_m é o parâmetro característico para cada tipo de motor, p_d é a pressão atmosférica seca [kPa], T é a temperatura absoluta na entrada do motor [K], e q_c é a vazão corrigida de combustível [mg/L.ciclo].

O f_m é uma função do parâmetro da vazão corrigida de combustível, desta forma, a vazão corrigida de combustível é calculada através das Equações (13) e (14), abordadas pelo item 6.3.2.2 da norma NBR ISO 1585.

$$q_c = \frac{q}{r} \tag{13}$$

$$q = \frac{Z \cdot \dot{m}_c}{S \cdot n} \tag{14}$$

onde, q é o parâmetro da vazão de combustível [mg/L.ciclo], r e Z são valores fornecidos pela norma de acordo com o tipo de motor, \dot{m}_c é a vazão mássica de combustível [g/s], S é o deslocamento volumétrico do motor [L], e n é a rotação [rpm].

3.5 CÁLCULOS DE EFICIÊNCIA E PODER CALORÍFICO

A razão entre o trabalho produzido e a quantidade de energia fornecida pelo combustível, possível de ser liberada pelo processo de combustão, pode ser utilizada para determinação da eficiência do motor. A medida de eficiência de um motor é chamada de *fuel conversion efficiency* (η_f) (HEYWOOD, 1988).

Desta forma, a eficiência de conversão dos combustíveis foi calculada conforme Equação (15).

$$\eta_f = \frac{P}{\dot{m}_c \cdot PCI} \tag{15}$$

onde, P é a potência gerada [kW], \dot{m}_c é a vazão mássica de combustível [g/s], e *PCI* é o poder calorífico inferior da mistura de etanol hidratado com óleo de mamona ou apenas do óleo diesel [MJ/kg].

O poder calorífico inferior (PCI) pode ser calculado a partir do poder calorífico superior (PCS), conforme Equação (16).

$$PCI = PCS - 2440 \cdot (9H + u)$$
 (16)

onde, H é o teor de hidrogênio do combustível [%m] e u é o teor de umidade do combustível [%m].

Com o PCI dos combustíveis (OD, ETH e OM) conhecidos, através dos resultados obtidos por análise em bomba calorimétrica e por trabalhos científicos, a determinação do PCI das misturas a serem avaliadas foi realizada através da Equação (17).

$$PCI_m = y_{ETH} \cdot PCI_{ETH} + y_{OM} \cdot PCI_{OM}$$
(17)

onde, PCI_m é o poder calorífico inferior na base mássica, y_{ETH} é a fração mássica de etanol hidratado, PCI_{ETH} é o poder calorífico inferior do etanol hidratado, y_{OM} é a fração mássica de óleo de mamona, e PCI_{OM} é o poder calorífico inferior do óleo de mamona.

4 RESULTADOS

4.1 CARACTERÍSTICAS DOS COMBUSTÍVEIS

A avaliação da viscosidade dos combustíveis foi realizada pelo Laboratório de Polímeros da UCS por meio de um reômetro. Com intervalo de medição de 30 °C até 70 °C, os resultados obtidos para os distintos combustíveis são listados na Tabela 8.

Combustível	Viscosidade [cP]								
	30 °C	35 °C	40 °C	45 °C	50 °C	55 °C	60 °C	65 °C	70 °C
OM100	366,78	264,83	195,99	146,87	111,93	87,5	68,61	55,67	46,15
OD100	2,638	2,413	2,244	2,112	1,977	1,880	1,785	1,687	1,608
ETH60OM40	3,278	2,645	-	-	-	-	-	-	-
ETH70OM30	2,168	1,790	1,391	1,020	0,728	0,640	-	-	-

Tabela 8 - Viscosidade das amostras em função da temperatura

Fonte: Autor (2019)

Os resultados de densidade dos combustíveis foram obtidos com densímetros de flutuação, onde todas as amostras foram avaliadas com temperatura ambiente de 20 °C. Os resultados obtidos são listados na Tabela 9, onde pode-se verificar que as misturas apresentaram densidades próximas a do óleo diesel, com ênfase na mistura ETH70OM30, que apresentou a menor variação em relação ao OD, de 1,6%.

Combustível	Densidade [kg/L]
OM100	0,955
ETH100	0,810
OD100	0,843
ETH60OM40	0,871
ETH70OM30	0,857

Tabela 9 - Densidade das amostras

Fonte: Autor (2019)

No anexo A é apresentado um laudo técnico, repassado pelo estabelecimento comercial, contendo propriedade individuais do OM. Nos anexos B e C, são apresentados laudos técnicos emitidos pela Cientec/RS em 2016, os quais demonstram as propriedades do OD com 7% de biodiesel e do ETH, respectivamente. De acordo com os laudos técnicos e pelas informações mostradas por Araújo et al. 2002 (Tabela 3), foi possível calcular, através das

Equações (16) e (17), o poder calorífico inferior de cada mistura avaliada, conforme demonstrado na Tabela 10.

Mistura	Combustível	Volume [ml]	Massa [g]	Fração mássica	PCI [kJ/kg]	
-	OD	-	-	-	42653	
-	ETH	-	-	-	23924	
-	OM	-	-	-	34903	
ETH60-	ETH	11250	9112,5	0,560	20755	
OM40	OM	7500	7162,5	0,440	28755	
ETH70-	ETH	12800	10368	0,664	27612	
OM30	OM	5500	5252,5	0,336	27015	

Tabela 10 - Cálculo do PCI de cada mistura

Fonte: Autor (2019)

Os resultados do poder calorífico inferior do OD, ETH e OM, utilizados para os procedimentos de cálculo, não foram obtidos com as amostras utilizadas nas avaliações experimentais, porém estimasse que o valor que foi utilizado não apresente variações elevadas em relação aos possíveis resultados a serem obtidos com os combustíveis utilizados nas avaliações.

O ETH apresenta o menor PCI dos combustíveis avaliados, ao ser misturado com o OM, o poder calorífico aumenta em relação ao resultado do ETH, porém fica abaixo do valor do PCI do OM. Com isso, devido ao fato do ETH e do OM apresentarem PCI inferior ao OD, as misturas ETH-OM apresentam PCI inferior ao OD, onde o ETH60OM40 apresenta 32,6% a menos e o ETH70OM30 35,3%.

4.2 ANÁLISE DE DESEMPENHO

Em todos os ensaios realizados foram monitoradas as condições ambientais (pressão atmosférica, temperatura e umidade relativa), com isso, através das metodologias de cálculo expostas pela norma NBR ISO 1585, foi possível determinar o fator para ajuste de potência (α) para os resultados obtidos.

Os valores medidos nos ensaios do motor são apresentados no Apêndice A. As médias calculadas e os resultados de potência corrigida, a partir dos fatores de correção reportados na Tabela 11, são dispostos no Apêndice B.

Combustível	Rotação [rpm]	TC20-PI10	TC20-PI17	TC21.5-PI10	TC21.5-PI17
	2750	1.092	1.063	1.084	1.078
	2600	1.101	1,074	1,106	1.063
	2450	1.078	1.071	1.143	1.077
	2300	1,105	1.076	1.096	1,095
OD100	2150	1,118	1,080	1,099	1,081
	2000	1,138	1,074	1,134	1,094
	1850	1,098	1,080	1,130	1,108
	1700	1,133	1,067	1,155	1,087
	2750	1,077	1,020	1,065	1,012
	2600	1,091	1,020	1,105	1,005
	2450	1,119	1,042	-	0,997
ETUCOOM40	2300	1,115	1,053	1,097	1,007
ETHOUOM40	2150	1,137	1,057	1,110	1,033
	2000	1,112	1,069	1,140	1,046
	1850	1,101	1,076	1,129	1,050
	1700	1,158	1,069	1,121	1,084
ETH70OM30	2750	1,092	-	-	1,000
	2600	1,095	-	-	0,989
	2450	1,098	1,044	-	0,994
	2300	1,118	1,039	-	1,010
	2150	1,095	1,050	-	1,017
	2000	1,096	1,058	-	1,012
	1850	1,117	1,054	-	1,025
	1700	1,130	-	-	1,048

Tabela 11 - Fator para ajuste de potência (α)

Fonte: Autor (2019)

Os ensaios dinamométricos foram realizados em duplicada para todos os combustíveis utilizados e para cada ponto medido, exceto para a avaliação do consumo de combustível. Os resultados obtidos nos ensaios são apresentados no Apêndice A. Os resultados apresentados na sequência são valores médios de dois ensaios, os quais também são apresentados no Apêndice B. Os desvios padrões de cada amostra são apresentados no Apêndice C.

4.2.1 Torque

O torque produzido pelo motor é um parâmetro importante para a análise dos resultados, pois a partir deste a potência é calculada. De modo geral, nota-se que o maior torque desenvolvido pelo motor com as distintas configurações de ajuste, TC e PI, foi no funcionamento com OD. As misturas avaliadas, ETH60OM40 e ETH70OM30, apresentaram

resultados adversos no motor, onde o torque obtido com estas tendeu a se aproximar dos resultados do OD em algumas rotações, já em outras apresentou variações elevadas.

De modo geral, o maior torque obtido com o OD, para as diversas taxas de compressão e pontos de injeção, foi na rotação de 2600 rpm, já as misturas apresentaram resultados variados, porém, sempre com torque máximo abaixo de 2600 rpm.

Quando comparado às misturas, o OD apresentou maior PCI (42653 kJ/kg), seguido da mistura ETH60OM40 com PCI de 28755 kJ/kg e o ETH70OM30 com PCI de 27613 kJ/kg. As diferenças de PCI refletiram nos resultados obtidos, sendo mostrados pelas Figuras 19, 20, 21 e 22, onde pode-se verificar que os maiores torques obtidos nos ensaios são do OD, seguidos da mistura ETH60OM40 e da mistura ETH70OM30, ou seja, o PCI do combustível apresentou influência no desempenho do motor, sendo demonstrado pelo torque obtido.

4.2.1.1 Taxa de compressão de 20:1 e ponto de injeção de 10° APMS

O motor operando com TC20-PI10 apresentou funcionamento estável para todos os combustíveis avaliados. Todas as rotações avaliadas na curva proposta ficaram estáveis, ou seja, quando o motor funcionou sob carga na rotação ajustada, o mesmo manteve a carga imposta pelo banco dinamométrico.

Conforme Figura 19, para o OD, o maior torque obtido foi de 41,6 N·m a 2600 rpm, já as outras misturas apresentaram maior torque na rotação de 2450 rpm, sendo de 32,5 N·m para o ETH70OM30 e 29,7 N·m para o ETH60OM40.

Figura 19 - Torque (N·m) desenvolvido com TC20-PI10

Fonte: Autor (2019)

O comportamento das curvas de torque é planar para rotações mais baixas, de 1700 a 2000 rpm, já em rotações mais altas a tendência das curvas é apresentar comportamento de rampa crescente e decrescente. As três curvas apresentadas apresentam tendência similar, com torque mínimo em 2300 rpm.

As curvas de torque apresentaram comportamento atípico quando comparadas as curvas geralmente encontradas, onde o torque é maior em baixas rotações e menor em altas rotações. Existem diversos fatores que podem influenciar o comportamento da curva gerando esta característica, contudo são necessários mais estudos para concretização da causa.

4.2.1.2 Taxa de compressão de 20:1 e ponto de injeção de 17° APMS

O motor funcionou de forma estável com o OD. Com a mistura ETH60OM40 a grande maioria das rotações ficaram estáveis com carga, exceto as rotações de 2600 e 2750 rpm, que apresentaram leve instabilidade, porém, com possível utilização do motor nestas rotações. O funcionamento do motor com a mistura ETH70OM30 apresentou grande instabilidade nas rotações de 1700, 2600 e 2750 rpm, onde não foi possível aquisitar uma medida confiável de torque.

Conforme Figura 20, para o OD, o maior torque obtido foi de 39,8 N·m a 2600 rpm, já a mistura ETH60OM40 apresentou torque máximo de 28,4 N·m a 1850 rpm e o ETH70OM30 de 25,4 N·m a 2450 rpm.

Figura 20 - Torque (N·m) desenvolvido com TC20-PI17

Fonte: Autor (2019)

O comportamento da curva de torque do OD é planar de 1700 a 2450 rpm, nas rotações mais altas apresenta característica de rampa decrescente. A característica da curva de torque para o ETH60OM40 é de rampa, com a tendência do torque aumentar conforme a rotação decai.

A característica da curva de torque obtida com a mistura ETH70OM30 é apresentarse planar da rotação de 2300 para 1850 rpm com decréscimo da rotação de 2450 para 2300 rpm.

4.2.1.3 Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS

O motor funcionou de forma estável com o OD. Com a mistura ETH60OM40 a grande maioria das rotações ficaram estáveis com carga, exceto as rotações de 2600 e 2750 rpm, onde o motor apresentou instabilidade, sendo, porém, possível aquisitar o torque. Com a mistura combustível ETH60OM40 a 2450 rpm, o motor apresentou alta instabilidade, não sendo possível aquisitar um dado confiável de torque. Processos de sangria foram realizados na linha de alimentação e de alta pressão da bomba injetora para tentar fazer com que o motor funcionasse estável, mantendo a carga na rotação, mas não surtiram efeito.

A alta instabilidade no funcionamento com carga foi constatada em todas as rotações do motor quando o mesmo operou com a mistura ETH70OM30, onde não foi possível aquisitar informações de torque. Com essa mistura, além do motor apresentar-se instável, os resultados observados no momento da avaliação dinamométrica demonstraram-se extremamente baixos em relação ao OD, onde em nenhuma rotação o torque desenvolvido foi maior que 11 N·m. Os resultados obtidos são apresentados na Figura 21.

Figura 21 - Torque (N·m) desenvolvido com TC21.5-PI10

Fonte: Autor (2019)

Para o OD o maior torque obtido foi de 41,5 N·m a 2600 rpm, já a mistura ETH60OM40 apresentou torque máximo de 29,6 N·m a 1850 rpm. O comportamento da curva de torque para o OD é de rampa decrescente de 2600 a 2300 rpm, invertendo o comportamento de 2300 a 1850 rpm. Já para o ETH60OM40 a característica é de rampa crescente nessa última faixa de rotação.

4.2.1.4 Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS

Conforme Figura 22, o motor operando com TC21.5-PI17 apresentou funcionamento estável para todos os combustíveis avaliados, ou seja, o motor apresentou-se estável em toda a faixa de rotação analisada.

Figura 22 - Torque (N·m) desenvolvido com TC21.5-PI17

Fonte: Autor (2019)

Para o OD o maior torque obtido foi de 45,1 N·m a 2600 rpm, já as misturas ETH60OM40 e ETH70OM30 apresentaram torque máximo em rotações mais baixas, sendo respectivamente de 29,4 N·m a 1700 rpm e 21,4 N·m a 1850 rpm. O comportamento da curva de torque é planar para o OD de 1700 a 2450 rpm, já dessa última rotação a 2600 rpm houve crescimento do torque para reduzir ligeiramente depois. As curvas de torque das misturas ETH60OM40 e ETH70OM30 apresentam característica de rampa decrescente da rotação de 2750 a 2450 rpm e rampa crescente da rotação de 2450 a 1700 rpm.

4.2.2 Potência

A potência resultante é obtida da multiplicação do torque pela rotação, desta forma as curvas de potência tendem a apresentar comportamentos semelhantes as curvas de torque. Os resultados de potência são referentes aos valores medidos nos ensaios dinamométricos, já os resultados corrigidos da potência com o fator de ajuste (α) são apresentados no Apêndice B, conforme comentado na seção 4.2.

De modo geral, nota-se que a maior potência desenvolvida pelo motor com as distintas configurações de ajuste, taxa de compressão e ponto de injeção, foi no funcionamento com OD. As misturas combustíveis avaliadas, ETH60OM40 e ETH70OM30, apresentaram resultados adversos de potência para menos, tendendo a se aproximar dos resultados do OD em algumas rotações, porém em outras, apresentam variações elevadas.

A maior potência obtida com o OD, para as diversas taxas de compressão e pontos de injeção, foi na rotação de 2750 rpm, já as misturas apresentaram resultados variados, porém, na maioria das avaliações a potência também tendeu a apresentar valores maiores em rotações mais altas.

4.2.2.1 Taxa de compressão de 20:1 e ponto de injeção de 10° APMS

Tendo apresentado comportamento estável com este ponto de injeção e taxa de compressão, a potência máxima obtida com o OD foi de 11,5 kW a 2750 rpm. A mistura ETH60OM40 apresentou potência máxima de 8,4 kW a 2600 rpm e a mistura ETH70OM30 de 7,6 kW a 2450 rpm. Conforme Figura 23, em rotações altas pode-se observar que as diferenças entre os resultados obtidos com as misturas são elevadas em relação aos resultados obtidos com o OD, onde na rotação de 2750 rpm ocorre uma redução de 27,8% da potência para a mistura ETM60OM40 e 39,1% para a mistura ETH70OM30. Já em rotações mais baixas as diferenças tendem a diminuir, onde na rotação de 1700 rpm a redução é de 20,3% para a mistura ETM60OM40 e 26,1% para a mistura ETH70OM30.

As misturas ETH60OM40 e ETH70OM30, apresentaram potências semelhantes abaixo da rotação de 2450 rpm, com baixa variação dos resultados.

Em quase todas as faixas de rotação, o comportamento das curvas de potência para os combustíveis avaliados possui característica de rampa, onde a mesma decai a partir de rotações mais altas, o único trecho da curva de potência que não apesenta esta característica é da rotação de 2750 a 2450 rpm da mistura ETH60OM40, onde o comportamento é planar.

Figura 23 - Potência (kW) desenvolvida com TC20-PI10

4.2.2.2 Taxa de compressão de 20:1 e ponto de injeção de 17° APMS

Com funcionamento estável em todas as rotações, a máxima potência observada no funcionamento do motor com OD foi de 11,1 kW a 2750 rpm, conforme demonstrado na Figura 24.

Figura 24 - Potência (kW) desenvolvida com TC20-PI17

Conforme abordado na seção 4.2.1.2, algumas rotações não puderam ser avaliadas devido à instabilidade no funcionamento do motor com carga. Desta forma, a máxima potência

Fonte: Autor (2019)

Fonte: Autor (2019)

observada com a mistura ETH60OM40 foi de 6,3 kW a 2750 rpm, com a mistura ETH70OM30 foi de 6,5 kW a 2450 rpm.

A curva de potência do OD apresenta característica de rampa, decaindo a partir da rotação de potência máxima, 2750 rpm até a menor rotação. As curvas características de potência das misturas apresentam comportamento planar, especialmente para a mistura ETH60OM40. A partir de 2300 rpm para 2450 rpm houve um aumento de 27,5% na potência para a mistura ETH70OM30 e de 9,3% para a mistura ETH60OM40. Para essa última houve decréscimo de potência até 2600 rpm, aumentando novamente até a alta rotação, comportamento determinado pelo torque (Figura 20).

4.2.2.3 Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS

Nesta configuração, com funcionamento estável em todas as rotações, a máxima potência observada no funcionamento do motor com OD foi de 11,7 kW a 2750 rpm conforme mostra a Figura 25. Conforme considerações iniciais descritas na seção 4.2.1.3, algumas rotações não puderam ser avaliadas devido à instabilidade na operação do motor, assim, a mistura ETH60OM40 apresentou potência máxima de 7,5 kW a 2750 rpm.

Em rotações altas pode-se observar que a diferença entre os resultados obtidos é maior do que em rotações mais baixas, onde na rotação de 2750 rpm ocorre uma redução de 35,9% no resultado da potência para a mistura ETM60OM40 em relação a obtida com o OD, já na rotação de 1700 rpm a redução é de 26,1%.

Figura 25 - Potência (kW) desenvolvida com TC21.5-PI10

Fonte: Autor (2019)

A curva de potência do OD apresenta característica de rampa, decaindo a partir da rotação de potência máxima, 2750 rpm. Já a curva características de potência da mistura ETH60OM40 apresenta comportamento crescente moderado no intervalo de rotação de 1700 a 2150 rpm (aumento de 17,6%), diminuindo ligeiramente (3,4%) até a rotação de 2300 rpm. Já da rotação de 2600 a 2750 rpm houve um acréscimo de 8,7% na potência.

4.2.2.4 Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS

Tendo apresentado comportamento estável com esta configuração de ponto de injeção e taxa de compressão, a maior potência obtida com o OD foi 12,7 kW a 2750 rpm, sendo a maior potência para todas as configurações analisadas. A mistura ETH60OM40 teve potência máxima de 5,2 kW a 1700 rpm e a mistura ETH70OM30 de 4,1 kW a 1850 rpm. As misturas combustíveis apresentaram resultados de potências com tendências similares, com baixa variação, sendo os resultados menores daqueles para o OD, conforme mostrado na Figura 26.

Figura 26 - Potência (kW) desenvolvida com TC21.5-PI17

Fonte: Autor (2019)

Em rotações altas pode-se observar que as diferenças entre os resultados obtidos com as misturas são elevadas em relação aos resultados obtidos com o OD, onde na rotação de 2750 rpm ocorre uma redução de 63,0% para a mistura ETM60OM40 e 70,1% para a mistura ETH70OM30. Já em rotações mais baixas as diferenças tendem a diminuir, onde na rotação de 1700 rpm a redução é de 25,7% para a mistura ETM60OM40 e 48,6% para a mistura ETH70OM30.

A curva de potência do OD apresenta característica de rampa descendente, a partir da rotação de potência máxima, 2750 rpm. Já as curvas características para as misturas ETH-OM apresentam comportamento aproximadamente planar.

4.2.3 Consumo específico de combustível

As declarações dos resultados do consumo específico de combustível são referentes aos valores calculados com a potência observada.

Dentre todas as configurações de ajuste da taxa de compressão e ponto de injeção, a curva característica do consumo específico do OD apresenta valores inferiores aos obtidos nas misturas ETH60OM40 e ETH70OM30. Em geral, é possível afirmar que o maior consumo específico de combustível das misturas se atribui ao fato das mesmas apresentarem menor PCI, em relação ao OD que, além de afetar o consumo, também afetou os resultados de desempenho.

Com isso, o comportamento das curvas do consumo específico de combustível das misturas, Figuras 27, 28, 29 e 30, apresentam comportamento semelhantes. Porém, de modo geral, a mistura ETH70OM30, que apresenta o menor PCI em relação aos demais combustíveis avaliados, possui os maiores consumos específicos de combustível.

4.2.3.1 Taxa de compressão de 20:1 e ponto de injeção de 10° APMS

Os resultados obtidos são apresentados na Figura 27.

Fonte: Autor (2019)

Os consumos específicos de combustível, referentes as rotações de potência máxima dos combustíveis avaliados foram de: 268,96 g/kWh para o OD; 351,91 g/kWh para o ETH60OM40; e 379,89 g/kWh para o ETH70OM30.

Observa-se também que o maior consumo específico de combustível para o OD ocorreu a 2000 rpm, ou seja, no valor de 335,19 g/kWh, já para a mistura ETH60OM40 ocorreu um valor alto a cerca de 2150 rpm (443,79 g/kWh), embora tenha havido um pico a 1700 rpm no valor de 442,86 g/kWh. Para a mistura ETH70OM30 o pico de consumo específico de combustível ocorreu a 2300 rpm (468,25 g/kWh).

4.2.3.2 Taxa de compressão de 20:1 e ponto de injeção de 17° APMS

Os consumos específicos de combustível, referentes as rotações de potência máxima dos combustíveis avaliados foram de: 249,46 g/kWh para o OD; 333,77 g/kWh para o ETH60OM40; e 351,54 g/kWh para o ETH70OM30. Os resultados obtidos para cada rotação, assim como os comportamentos das curvas, são apresentados na Figura 28.

Figura 28 - Consumo específico de combustível (g/kWh) com TC20-PI17

Fonte: Autor (2019)

Para o OD o consumo específico de combustível máximo ocorreu nessa configuração a 2300 rpm (308,08 g/kWh). Para a mistura ETH60OM40 o pico aconteceu a 2600 rpm (453,37 g/kWh). Para a mistura ETH70OM30 o comportamento foi quase que planar entre 1850 e 2300 rpm.

4.2.3.3 Taxa de compressão de 21,5:1 e ponto de injeção de 10° APMS

Os consumos específicos de combustível, referentes as rotações de potência máxima dos combustíveis avaliados foram de 238,33 g/kWh para o OD e 343,40 g/kWh para o ETH60OM40. Os resultados obtidos para cada rotação, assim como os comportamentos das curvas, são apresentados na Figura 29.

Figura 29 - Consumo específico de combustível (g/kWh) com TC21.5-PI10

4.2.3.4 Taxa de compressão de 21,5:1 e ponto de injeção de 17° APMS

Os consumos específicos de combustível, referentes as rotações de potência máxima dos combustíveis avaliados foram de: 239,88 g/kWh para o OD; 408,66 g/kWh para o ETH60OM40; e 368,01 g/kWh para o ETH70OM30. Os resultados obtidos para cada rotação, assim como os comportamentos das curvas, são apresentados na Figura 30. Na faixa de rotação de 1700 a 2450 rpm, o comportamento do consumo específico de combustível para o OD foi aproximadamente planar, já para as misturas o comportamento foi em rampa crescente de 1850 a 2450 rpm.

Figura 30 - Consumo específico de combustível (g/kWh) com TC21.5-PI17

Fonte: Autor (2019)

4.2.4 Eficiência

As eficiências de conversão dos combustíveis foram calculadas a partir da Equação (15), onde foram considerados valores de potência e consumo observados. Conforme Figura 31, de modo geral, as misturas ETH-OM apresentaram eficiências de conversão maiores que as do OD.

Para as misturas, em rotações mais altas, a tendência é de que a eficiência de conversão do combustível seja menor, em relação aos pontos de injeção, para o ponto de 17° APMS, já em rotações mais baixas a eficiência para os dois pontos de injeção tende a ser similar, e em alguns casos superior para o ponto de injeção de 10° APMS.

Da mesma forma, em rotações mais altas, a maior taxa de compressão tende a diminuir o resultado da eficiência de conversão das misturas, a medida que quando a rotação é menor os resultados tendem a ser semelhantes.

O OD apresenta um comportamento diferente daqueles das misturas, onde em rotações mais altas, o ponto de injeção de 17° APMS tente a apresentar eficiências de conversão maiores que o ponto de 10° APMS. Isso também ocorre quando a taxa de compressão aumenta, assim a maioria dos valores de eficiência mais elevadas do OD foram observados com o ajuste de TC21.5-PI17.

Figura 31 - Eficiências de conversão dos combustíveis (%)

4.2.5 Temperaturas

A Figura 32 mostra os resultados de temperaturas dos gases de escape, ao se utilizar as misturas ETH-OM houve a redução da temperatura dos gases de escape em relação as obtidas com o OD, a ponto de nenhuma temperatura ser maior que as do OD.

Figura 32 - Temperaturas dos gases de escape (°C)

A mistura ETH70OM30, apresentou menores temperaturas de escape do que a mistura ETH60OM40, fato relacionado à diferença de ETH em sua composição, a medida que o ETH contribui para a diminuição da temperatura na câmara de combustão, evitando assim perdas térmicas excessivas.

É possível verificar que para o OD, conforme o motor aumenta a rotação a temperatura dos gases se eleva, assim as maiores temperaturas de escape são referentes as maiores potências observadas, as quais elevam com o aumento da rotação, ver seção 4.2.2.

Para as misturas ETH-OM, as maiores temperaturas de escape não ocorreram sempre em rotações mais altas, pois as maiores temperaturas estão relacionadas as maiores potências observadas.

Pode-se observar que para todos os combustíveis avaliados, em cada rotação do intervalo experimental, ao se atrasar o ponto de injeção, as temperaturas de escape tendem a aumentar. Também, pode-se verificar em cada rotação, que para todos os combustíveis, com o mesmo ponto de injeção, tanto com 10° APMS ou 17° APMS, a taxa de compressão de 20,0:1 apresentou as maiores temperaturas de escape.

4.3 ANÁLISE DOS GASES DE COMBUSTÃO

As medições obtidas nos experimentos são expostas a seguir, de modo que são referentes ao: índice de fumaça; monóxido de carbono; dióxido de carbono; hidrocarbonetos; e óxidos de nitrogênio. Os resultados coletados nos ensaios são mostrados nas tabelas do Apêndice A, as médias dos valores obtidos são apresentadas nas tabelas do Apêndice B.

4.3.1 Índice de fumaça

O índice de fumaça foi medido com o equipamento *Smoke Meter* da AVL conforme descrito no capítulo 3, e define a escuridão da fumaça devido à presença nos gases de carbono incombusto (TELLI, 2018).

Conforme apresentado na Figura 33, no funcionamento do motor com OD, em nenhum ensaio observou-se índice de fumaça inferior a 5,0 UB. Pode-se observar que com o motor funcionando em ambas taxas de compressão, de 20,0:1 e 21,5:1, ao se atrasar o ponto de injeção para 10° APMS, o índice de fumaça aumenta em todas as rotações avaliadas com o OD.

Também para o OD, com o ponto de injeção de 17° APMS, ao se reduzir a taxa de compressão ocorre a redução do índice de fumaça.

Figura 33 - Índices de fumaça dos gases de escape (UB)

Fonte: Autor (2019)

Nas misturas de ETH-OM avaliadas, o índice de fumaça reduziu significativamente, ao ponto de ser "zero" em mais de uma rotação avaliada. A queda no índice é atribuída ao fato do ETH apresentar oxigênio em sua composição, e também por apresentar menores quantidades de carbono (o ETH possui 48,63% m de carbono e o OD 86,08% m) em sua composição (vide laudos técnicos nos Anexos B e C). Desta forma, estes são os principais fatores que contribuem para a alta redução do índice de fumaça dos gases de escape.

4.3.2 Emissão de monóxido de carbono (CO)

As emissões de CO foram medidas com o analisador de gases da marca AVL, conforme descrito no capítulo 3, os resultados obtidos são apresentados na Figura 34.

Quando comparadas as emissões do OD, os resultados de emissão de CO obtidos para as misturas ETH-OM reduziram significativamente, ao ponto de apresentar redução de 95,8% na rotação de 1700 rpm para a TC20-PI10. Pode-se observar que ocorre uma queda nos resultados de CO à medida que a rotação do motor aumenta quando o mesmo opera com OD, esta variação pode ser constatada para todas as configurações de ajuste avaliadas.

Para as misturas ETH-OM, ocorre a tendência dos resultados obtidos manterem-se estáveis, com baixa variação, para os ajustes de TC20-PI10, TC20-PI17 e TC21.5-PI10. No funcionamento do motor com a TC21.5-PI17, com ambas misturas avaliadas ocorre a tendência de aumento das emissões de CO com o aumento da rotação do motor, ficando mais evidente a

partir da rotação de 2300 rpm.

Figura 34 - Emissões de CO (% em volume)

Fonte: Autor (2019)

4.3.3 Emissão de dióxido de carbono (CO₂)

Conforme descrito no capítulo 3, as medições das emissões de CO₂ foram realizadas com um analisador de gases da marca AVL, onde os resultados obtidos podem ser visualizados na Figura 35.

Em todas as distintas configurações de ajuste do motor, as emissões de CO₂ obtidas com as misturas ETH-OM foram menores do que as obtidas com o OD, ao ponto de apresentar uma redução de 36,3% na rotação de 2750 rpm para a TC21.5-PI17. Conforme mostrado na seção 4.2.2, a potência obtida com as misturas diminuiu, este fato pode influenciar nas emissões de CO₂ à medida que o motor não desenvolveu a mesma potência em relação ao OD.

Segundo Telli (2018), a razão da redução nas emissões de CO₂ está relacionada ao maior calor latente do etanol, que ocasiona a redução da temperatura do gás no cilindro, inibindo a oxidação do CO, o que leva a redução da emissão do CO₂. Também pelo fato do etanol apresentar menos carbono em sua composição (48,63% m para o ETH, comparado aos 86,08% m para o OD), menos carbono se tem disponível na câmara de combustão, reduzindo assim e emissão de CO₂.

Figura 35 - Emissões de CO₂ (% em volume)

Fonte: Autor (2019)

4.3.4 Emissão de hidrocarbonetos (HC)

Os resultados das emissões de HC são demonstrados na Figura 36, de modo que se pode observar que as menores emissões de HC foram obtidas no funcionamento do motor com o OD.

Figura 36 - Emissões de HC (ppm)

Fonte: Autor (2019)
Os resultados de emissão de HC para o OD apresentaram-se estáveis para as distintas rotações quando o motor funcionou com TC20-PI10 e TC21.5-PI10, já para a TC20-PI17 podese observar um aumento nas emissões de HC com a redução da rotação. Com a TC21.5-PI17, as emissões de HC tenderam a apresentar valores semelhantes em altas e baixas rotações.

O aumento nas emissões de HC está relacionado a presença de etanol nas misturas, o qual age com efeito de resfriamento no processo de combustão, desta forma, a menor temperatura na combustão pode não ser capaz de queimar por completo o ETH e o OM durante o processo de expansão. Durante o ensaio dinamométrico, na avaliação com as mistura ETH-OM, principalmente no funcionamento do motor com TC21.5-PI10, pode-se observar a presença de combustível líquido no escapamento, o que corrobora com o efeito mencionado.

4.3.5 Emissão de óxidos de nitrogênio (NO_x)

A Figura 37 mostra os resultados das emissões de NO_x obtidos. Ao se utilizar as misturas ETH-OM houve a redução das emissões de NO_x em relação aos resultados obtidos com o OD, a ponto de nenhuma rotação dos diversos ajustes realizados no motor apresentar maiores emissões do que as do OD. As menores emissões de NO_x no caso das misturas atribuise as menores temperaturas observadas na descarga do motor em relação àquelas com o OD.

Figura 37 - Emissões de NO_x (ppm)

Fonte: Autor (2019)

Tanto para as misturas como para o OD, as emissões de NO_x tenderam a aumentar com a redução da rotação do motor para os diferentes ajustes realizados. As maiores emissões de NOx se deram na rotação de 1700 rpm com a TC21.5-PI17.

Para as condições em que o ponto de injeção passou de 10° APMS para 17° APMS houve um aumento nas emissões de NO_x para os combustíveis avaliados, esta característica só não foi observada no intervalo de rotação de 2300 a 2750 rpm do funcionamento do motor com a mistura ETH60OM40, onde o comportamento foi o contrário, ao se adiantar o ponto de injeção ocorreu a diminuição das emissões de NO_x.

4.4 SÍNTESE DOS RESULTADOS

Os resultados foram analisados a partir dos dados obtidos experimentalmente nos ensaios dinamométricos, nas distintas configurações de taxa de compressão e ponto de injeção ajustados no motor. Desta forma, a Tabela 12 traz a síntese dos resultados obtidos demonstrados ao longo do capítulo 4, de maneira a comparar os resultados obtidos com as misturas ETH-OM avaliadas, com a condição de combustível testemunha, OD100.

A síntese dos resultados é apresentada de forma visual, onde de maneira geral, as comparações apresentadas demonstram uma tendência de aumento ou redução dos resultados.

Darâmatros	Resultados obtidos em	relação ao OD100
Falametros	ETH60OM40	ETH70OM30
Torque	\downarrow	\downarrow
Potência	\downarrow	\downarrow
Consumo específico	\uparrow	1
Eficiência de conversão	↑	1
Temperatura do escape	\downarrow	\downarrow
Índice de fumaça	\downarrow	\downarrow
CO	\downarrow	\downarrow
CO_2	\downarrow	\downarrow
HC	↑	1
NO _x	\downarrow	\downarrow

Tabela 12 - Síntese dos resultados

Fonte: Autor (2019)

5 CONCLUSÃO

Neste trabalho foram demonstrados os resultados obtidos experimentalmente, em testes dinamométricos, de um motor monocilíndrico com ignição por compressão com distintas configurações de ponto de injeção e taxa de compressão. Nos ensaios o motor operou em modo mono combustível e bicombustível, com misturas controladas de ETH e OM que tiveram suas propriedades caracterizadas.

Aparentemente as misturas ETH-OM apresentaram miscibilidade total. As densidades das misturas ficaram próximas, porém, maiores que a densidade do OD, pois a presença de OM na mistura tende a aumentar seu valor. A mistura ETH70OM30 tendeu a se aproximar mais da densidade do OD, variação de 1,6%, graças a maior proporção de ETH. A viscosidade apresentou variação em função da temperatura do fluido, com a tendência do ETH nas misturas evaporar à medida que a temperatura aumenta. Isso foi detectado pelo aumento da viscosidade das misturas nas temperaturas mais altas. Entretanto, em temperaturas ambientes, a evaporação do ETH não influencia significativamente os resultados, onde a mistura ETH60OM40 apresentou uma viscosidade 24,2% maior do que a do OD100 e a mistura ETH70OM30, 17,8% menor devido a maior concentração de ETH.

O OD apresenta maior PCI em relação as misturas ETH-OM. Esta diferença de PCI reflete nos resultados obtidos na operação do motor, sendo observado que os maiores desempenhos em termos de torque e potência obtidos foram com o OD. Pelos menores PCIs das misturas ETH60OM40 e ETH70OM30, as mesmas apresentaram maiores consumos específicos, sendo a última mistura a que apresentou maior consumo pelo seu menor PCI.

Dentre as comparações individuais no funcionamento do motor com cada mistura ETH-OM, em cada configuração de ajuste mecânico do motor, ponto de injeção e taxa de compressão, pode-se obter aumento de torque e potência à medida que o ponto de injeção foi reduzido. Já quando o ponto de injeção é mantido, ao se aumentar a taxa de compressão, a tendência do torque e potência foi de apresentar redução para as misturas avaliadas.

Dentre todas as avaliações realizadas, a mistura ETH70OM30 não foi possível de ser avaliada na configuração de ajuste TC21.5-PI10, pois o motor apresentou alta instabilidade no funcionamento, podendo este efeito estar relacionado ao menor tempo para vaporização e queima do combustível devido ao atraso do ponto de injeção. De modo geral, observou-se que em rotações mais altas, acima de 2450 rpm, o motor apresenta certa instabilidade no funcionamento com as misturas, porém em rotações mais baixas, próximas a 2000 rpm, o funcionamento foi estável. Desta forma, a utilização das misturas em substituição total ao OD irá apresentar melhores resultados em produtos que necessitam menores rotações e cargas constantes, como por exemplo grupos geradores, ao ponto que aplicações com motores a diesel com injeção mecânica de combustível, ajustados em curva F, são submetidos as rotações e cargas variadas.

Apesar do torque e potência para o motor operando com as misturas terem sido menores que para o OD, as eficiências de conversão foram, em geral, maiores para ambas misturas. Em rotações mais altas, a tendência é que a eficiência de conversão das misturas seja menor com o ponto de injeção de 17° APMS, já em rotações mais baixas e eficiência tende a ser similar para os dois pontos. Essa constatação também pode ser verificada com a maior taxa de compressão, onde em altas rotações a eficiência tendeu a diminuir e à medida que a rotação é menor, os resultados tendem a ser semelhantes.

Em relação a temperatura dos gases de escape, as misturas ETH-OM apresentaram redução em relação as obtidas com o OD, a ponto de nenhuma temperatura ser maior que as do OD. As menores temperaturas de escape estão relacionadas a presença de ETH nas misturas, o qual contribui para a diminuição da temperatura na câmara de combustão pelo seu alto calor latente de vaporização, sendo de 0,92 MJ/kg para o ETH e de 0,23 a 0,60 MJ/kg para o OD conforme Kumar et al. (2013). Esta característica evita perdas térmicas excessivas.

O índice de fumaça obtido com as misturas reduziu significativamente em relação ao OD, ao ponto de ser "zero" em mais de uma rotação avaliada. Esta queda é relacionada a característica do ETH apresentar oxigênio em sua composição, e também por ter menores teores de carbono, sendo os principais fatores que contribuem para a alta redução do índice de fumaça.

Em todos os ajustes e rotações avaliados no motor, os níveis de emissão de poluentes, como monóxido de carbono, dióxido de carbono e óxidos de nitrogênio, das misturas avaliadas apresentaram redução expressiva em relação aos níveis medidos do OD. Porém, as misturas apresentaram aumento na emissão de hidrocarbonetos em todas os testes realizados. Isso foi causado pela menor temperatura de combustão, dificultando a queima total do combustível, que pode ser evidenciado em alguns testes pela constatação de combustível líquido na linha de escape.

Por fim, em termos econômicos, atualmente a utilização das misturas avaliadas não se justifica economicamente devido ao alto preço dos combustíveis em relação ao OD, em particular do OM, cujo preço em estabelecimentos comerciais do ramo é em torno de R\$ 21,00/L. Porém, do ponto de vista técnico, as informações de emissões obtidas com o trabalho colaboram significativamente com o entendimento do comportamento apresentado pelo motor com as distintas configurações de ajuste. À medida que o estudo sobre o uso dos

biocombustíveis em motores se desenvolve, isso presta uma colaboração à sociedade com informações que servem de base para tomada de decisões.

As previsões futuras para a linha automotiva, para produtos que utilizam motores de combustão interna de ignição por compressão, é de atender níveis de emissões cada vez menores, os quais são definidos e avaliados mediante a resoluções e legislações, como é o exemplo da legislação de redução de emissão de poluentes Proconve P8, equivalente a norma europeia EURO 6, que entrará em vigor em 2023.

Assim, além de sistemas de gerenciamento e controle para os gases de escape de veículos desenvolvidos por montadoras e fabricantes, o desenvolvimento de combustíveis, que ao serem queimados geram menos emissões de poluentes, é uma necessidade fundamental para atendimento de legislações. Isso contribuirá sobremaneira para a preservação geral do planeta, corroborando com a possibilidade de substituição total de combustíveis derivados de petróleo.

5.1 SUGESTÕES PARA TRABALHOS FUTUROS

Como sugestões para trabalhos futuros, propõe-se os estudos abaixo:

- a) Com as mesmas misturas analisadas por este trabalho, avaliar o desempenho do motor com taxas de compressão menores que 20,0:1 com os mesmos pontos de injeção ou com um maior adiantamento do ponto de injeção, ou seja, além dos 17° APMS.
- b) Outra sugestão se diz respeito a ensaios de durabilidade de longos períodos na operação do motor com biocombustíveis, a fim de avaliar a integridade dos componentes do motor e o comportamento do mesmo ao longo da sua vida de utilização.

REFERÊNCIAS BIBLIOGRÁFICAS

ABDALLA, A. L.; SILVA FILHO, J. C.; GODOI, A. R.; CARMO, C. A.; EDUARDO, J. L. P. **Utilização de subprodutos da indústria de biodiesel na alimentação de ruminantes**. Revista Brasileira de Zootecnia, v. 37, suplemento especial, p. 260-268, 2008.

ANP. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2018. Disponível em: <www.anp.gov.br/>>. Acesso em: 29 abril 2019.

ARAÚJO, K. M.; OLIVEIRA, A. K. C; COSTA, G. B; QUEIROGA, R. N. G. e PANNIR SELVAM, P. V. **Estudo comparativo técnico e econômico de diferentes óleos vegetais brasileiros para produção de biocombustível**. Procedings of the 4th Encontro de Energia no Meio Rural. Natal: 2002.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **ISO 3046/1**: Reciprocating internal combustion engines – Performance - Part 1: Declarations of power, fuel and lubricating oil consumptions, and test methods - Additional requirements for engines for general use. Rio de Janeiro, 2002.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR ISO 1585**: Veículos rodoviários – código de ensaio de motores – potência líquida e efetiva. Rio de Janeiro, 1996.

BELTRÃO, N. E. M. Informações sobre o Biodiesel, em Especial Feito com o Óleo de Mamona. Campina Grande: Ministério da Agricultura Pecuária e Abastecimento, 2003.

BENDU, H.; MURUGAN, S. Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines. Renewable and Sustainable Energy Reviews, v. 38, p. 732–746, 2014.

BILHÃO, J. A. **Viabilidade técnico-econômica do uso do etanol super-hidratado em motores de ciclo Otto**. 2015. 96 f. Dissertação (Mestrado) - Curso de Pós-Graduação em Engenharia de Produção, Universidade Federal de Santa Maria, Santa Maria, 2015.

BR. Segurança e emergência. Disponível em:

< http://www.br.com.br/pc/seguranca-e-emergencia/>. Acesso em: 26 mar. 2019.

BRASIL. Lei nº 13.576, de 26 de dezembro de 2017. Dispõe sobre a política nacional de biocombustíveis (RenovaBio) e dá outras providências. **Diário Oficial da União**, Brasília, DF, dez. 2017.

BRONZATTI, F. L.; NETO, A. I. Matrizes energéticas no Brasil: Cenário 2010-2030. ENEGEP, p. 2, 2008.

BRUNELLI, R. R. Estudo de viabilidade operacional e desempenho de motores de combustão interna operando com combustível biodiesel em relação ao combustível diesel automotivo. 2009. 159 f. Dissertação (Mestrado) – Curso de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2009.

BRUNETTI, F. Motores de Combustão Interna. São Paulo: Edgar Blucher, 2012.

CONCEIÇÃO, M. M.; CANDEIA, R. A., SILVA, F. C.; BEZERRA, A. F.; FERNANDES Jr., V. J.; SOUZA, A. G. **Thermoanalytical characterization of castor oil biodiesel**. Renewable and Sustainable Energy Reviews, v. 11, i. 5, p. 964-975, 2007.

CORTEZ, J. W.; GUIMARÃES, C. C.; SANTOS, V. M. L. **Statitionary engine performance using mixture of soybean and castor bean biodiesel to diesel oil**. Engenharia Agrícola, v. 38, n. 6, 2018.

CORTEZ, L. A. B. Universidades e empresas: 40 anos de ciência e tecnologia para o etanol brasileiro. São Paulo: Edgar Blucher, 2016.

FREITAS, S. M; FREDO, C. E. **Biodiesel à base de óleo de mamona: algumas considerações**. Informações Econômicas, São Paulo, vol. 35, n. 1, 2005.

GALVÃO, L. P. F. C. Avaliação termoanalítica da eficiência de antioxidantes na estabilidade oxidativa do biodiesel de mamona. 2007. 159 f. Dissertação (Mestrado) - Curso de Química, Universidade Federal do Rio Grande do Norte, Natal, 2007.

GARCIA, R. **Combustíveis e combustão industrial.** 2. ed. Rio de Janeiro: Interciência, 2013.

GIACOSA, D. Motori Endotermici. 15. ed. Milano: Hoelpi, 2000.

GUIMARÃES, C. C.; SANTOS, V. M. L.; CORTEZ, J. W.; SANTOS, L. D. P. G. Redução da emissão de material particulado em função da inserção de misturas do biodiesel de soja e mamona ao diesel. Engenharia Sanitária e Ambiental, v. 23, n. 2, p. 355-362, 2017.

HEYWOOD, J. B. Internal Combustion Engine Fundamentals. New York: Mcgraw-hill, 1988.

INSTITUTO BRASILEIRO DE PETRÓLEO. Curso de informação sobre combustíveis e combustão. Rio de Janeiro: IBP, iv, 442 p, 1982.

INTERNATIONAL ENERGY AGENCY. **Renewables 2018 analysis and forecasts to 2023. Executive Summary.**, p. 5, 2018.

KNOTHE, G.; GERPEN, J. V; KRAHL, J; RAMOS, L. P. **Manual do Biodiesel**. 1. ed. São Paulo: Edgar Blucher, 2006.

KUMAR, S.; CHO, J. H.; PARK, J.; MOON, I. Advances in diesel-alcohol blends and their effects on the performance and emissions of diesel engines. **Renewable and Sustainable Energy Reviews**, v. 22, p. 46–72, 2013.

LINTEC. **Motores linha Agrale**. Disponível em: <http://www.lintecmotores.com.br/produtos/motores/linha-agrale/m93-13>. Acesso em: 20 mai. 2019.

LORA, E. E. S; VENTURINI, O. J. **Biocombustíveis**. 1 e 2 vol. Rio de Janeiro: Interciência, 2012.

MARTINS, J. Motores de Combustão Interna. 2 ed. Porto: Publindústria Edições Técnicas, 2006.

MARTYR, A. J.; PLINT, M. A. Engine Testing: Theory and Practice. 7 ed. Oxford: Elsevier, 2007.

OMEGA. **Tabela para referência de termopares**. Disponível em: https://br.omega.com/prodinfo/termopares.html>. Acesso em 27 mai.2019.

PERALTA, E. G.; BARBOSA, C. R. F. **Características de desempenho de um motor diesel funcionando com mistura ternária de combustíveis diesel – álcool - óleo de rícino**. XVI Congresso Brasileiro de Engenharia Mecânica, vol. 4, p 522, 2001.

PINZI, S.; LÓPEZ, I.; LEIVA-CANDIA, D. E.; REDEL-MACÍAS, M. D.; HERREROS, J. M.; CUBERO-ATIENZA, A.; DORADO, M. P. **Castor oil enhanced effect on fuel ethanoldiesel fuel blends properties**. Applied Energy, v. 224, p. 409-416, 2018.

PORTAL DO BIODIESEL. **Cartilha biodiesel** – SEBRAE. Disponível em: http://www.biodiesel.gov.br/docs/Cartilha_Sebrae.pdf>. Acesso em: 30 mar. 2019.

PRAKASH, T.; GEO, V. E.; MARTIN, L. J.; NAGALINGAM, B. Effect of ternary blends of bio-ethanol, diesel and castor oil on performance, emission and combustion in a CI engine. Renewable and Sustainable Energy Reviews, v. 122, p. 301-309, 2018.

SANTOS, R. F. **O biodiesel do óleo da mamona e a produção de fitomassa: considerações gerais e singularidades**. Campina Grande: Ministério da Agricultura Pecuária e Abastecimento, 2006.

SCHENCK. Technical Specification Eddy-Current Dynamometer W Series. 2001.

TEIXEIRA, E. C. **Biodiesel: Impacto Ambiental Agronômico e Atmosférico**. Porto Alegre: Fepam, 2012.

TELLI, G. D. Análise do desempenho de um motor a combustão de ignição por compressão monocilíndrico no funcionamento bicombustível diesel-etanol. 2018. 126 f. Dissertação (Mestrado) - Curso de Engenharia Mecânica, Universidade de Caxias do Sul, Caxias do Sul, 2018.

TILLMANN, C. A. C. **Motores de combustão interna e seus sistemas**. Pelotas: Rede e-Tec Brasil, 2013.

TURMINA, R. Análise experimental de um motor ciclo diesel operando em modo bicombustível etanol – óleo de mamona. 2018. 80 f. TCC (Graduação) - Curso de Engenharia Mecânica, Universidade de Caxias do Sul, Caxias do Sul, 2018.

VAILATTI, M. A.; ALTAFINI, C. R.; TELLI, G. D.; ROSA, J. S. **Experimental analysis of** a small generator set operating on dual fuel Diesel-Ethanol. Scientia Cum Industria, v. 5, n. 1, p. 1-9, 2017.

VANZELLA, E. Estudo de propriedades físico-químicas do etanol hidratado com adição

de biodiesel para uso em motores de combustão interna ciclo Otto. 2015. 65 f. Dissertação (Mestrado) – Engenharia de Energia na Agricultura, Universidade Estadual do Oeste do Paraná, Cascavel, 2015.

VLASSOV, D. **Combustíveis, combustão e câmaras de combustão**. Curitiba: Editora da UTFPR, 2001.

ANEXO A – LAUDO TÉCNICO DO ÓLEO DE MAMONA

<u> 51000011111124</u>	Laudo To OLEO DE M (OLEO DE 1	écnico IAMONA RICINO)	Cliente Nota Fiscal n°: Data de emissão: Página: 01 de 01
50 141			
LOTE:		00318	
DATA DE F	ABRICAÇAO:	10/12/2018	S
DATA DE V	ALIDADE:	10/12/2019	
ANALISE	NUMERO DO LO		ESPECIFICACAO
Aspecto	Cont	forme	Liquido Límpido amarelo
Densidade	0.9	956	Entre 0.957-0.967
Acidez	0	60	Máximo 1 0%
Indice de Umidade	0,1	152	Máximo 0.375
Indice de Saponificaçã	0 1	80	Entre 175-186
Indice de Hidroxila		60	Minimo 155
Viscosidade	755	5 cP	Mínimo 600 cP
D produto acima descrito é idequadamente. Os dados acima não isenta Fécnico Responsável : Eng	estável dentro de m da realização de g.º João Osório Ma	evisado pelo c seu prazo de v um ensaio de rtins CRQ n.°	alidade, desde que armazenado entrada de insumos. 05301622

ANEXO B – LAUDO TÉCNICO DO ÓLEO DIESEL

		•
	CIENTE	C .0
	FUNDAÇÃO DE CIÊNCIA E TECNOL	OGIA
Ru	a Washington Luiz, 675 - CEP 90010-460 - Porto Alegre/RS/Bra Fone +55 (51) 32872000 - e-mail faleconosco@cientec.rs.gov	sil - CNPJ 92.816.685/0001-67 .br - www.cientec.rs.gov.br
Documento: RE	LATÓRIO DE ENSAIO	Número: 4821 - 16890
Os resultados cont	idos neste documento têm significação restrita e aplicam ou calibrados. Este documento somente poderá se	-se exclusivamente ao item ou itens ensaiados r publicado na ínteora.
	ENSAIOS EM COMBUSTÍV	EL
	_	
Cliente: FUNDA	ÇÃO UNIVERSIDADE DE CAXIAS DO SUL	
Rua Fran	ncisco Getúlio Vargas, 1130 – Bloco 72.	
95070-50	60 – Caxias do Sul, RS.	0
Item ensaiado: ("Óleo Diesel".	(01) uma amostra entregue à CIENTEC, cole	tada e identificada pelo Cliente como
Data do recebim	ento do item: 04 de outubro de 2016.	
Período da realiz	zação dos ensaios: de 10 de outubro a 29 de	novembro de 2016.
Local de Realiza	ção: Laboratório de Ensaios em Combustíveis	s.
RESULTADOS:		
	Enxofre total _(b.c.r.) , %	0,04
	Carbono _(b.c.r.) ,%	
	Hidrogênio _(b.c.r.) , %	
	Nitrogênio _(b.c.r.) , %	0,04
	[Oxigênio + halogênios + cinza] _(b.c.r.) ,%	1,40
	Poder Calorífico Superior _(b.c.r.) , kcal/kg	10.840
2	Poder Calorífico Superior _(b.c.r.) , J/g	45.385
Observações:		
01) Abreviatura: (b.c.r.) = base como recebida.	
02)% = g/100g.		
03)O teor de [oxig de cinzas não foi	jênio + halogênios] é o resultado da diferença determinado.	da análise elementar e cinzas. O teor

ANEXO C – LAUDO TÉCNICO DO ETANOL HIDRATATO

00 00
Rua Washington Luiz, 675 - CEP 90010-460 - Porto Alegre/RS/Brasil - CNPJ 92.816.685/0001-67. Fone +55 (51) 32872000 - e-mail faleconosco@cientec.rs.gov.br - www.cientec.rs.gov.br
Documento: RELATÓRIO DE ENSAIO Número: 4821 - 16887 Os resultados contidos neste documento têm significação restrita e aplicam-se exclusivamente ao item ou itens ensaiados ou calibrados. Este documento somente poderá ser publicado na íntegra.
ENSAIOS EM COMBUSTÍVEL
Cliente: FUNDAÇÃO UNIVERSIDADE DE CAXIAS DO SUL Rua Francisco Getúlio Vargas, 1130 – Bloco 72. 95070-560 – Caxias do Sul, RS.
Item ensaiado: (01) uma amostra entregue à CIENTEC, coletada e identificada pelo Cliente como "Etanol Hidratado de Posto de Combustível".
Data do recebimento do item: 04 de outubro de 2016.
Período da realização dos ensaios: de 10 de outubro a 29 de novembro de 2016.
Local de Realização: Laboratório de Ensaios em Combustíveis.
RESULTADOS:
Carbono _(b.c.r.) ,%
Hidrogênio _(b.c.r.) , %
Nitrogênio _(b.c.r.) , %0,03
[Oxigênio + halogênios + cinza] _(b.c.r.) ,%
Poder calorífico superior _(b.c.r.) , kcal/kg 6.430
Poder calorífico superior _(b.c.r.) , J/g 26.920 Observações:
 01) Abreviatura: (b.c.r.) = base como recebida. 02)% = g/100g. 03)O teor de [oxigênio + halogênios] é o resultado da diferença da análise elementar e cinzas. O teor de cinzas não foi determinado.

APÊNDICE A – COLETAS REALIZADAS NOS ENSAIOS

											Resultad	os obtidos	no ensa	io do moto	or M93 c	om TC20F	PI10 - Op	erando co	om OD100)										
Rotação [rpm]	Torqu	e [Nm]	Potê Observa	ncia da [kW]	Vazão r	nássica de	combustív	vel [g/h]	Óleo lut [°	orificante C]	Admiss	são [°C]	Esca	oe [°C]	Bulbo	seco [°C]	Bulbo ú	mido [°C]	Pressão b [k	arométrica Pa]	Opacida	ide [UB]	со	[%]	CO2	! [%]	HC	ppm]	NOx	(ppm)
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	m _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	39,8	40	11,4	11,5	6108	5908	233,8	3079,6	88	88	26	26	658	658	22	22	20	20	92,2	92,19	5,8	5,7	0,45	0,48	11,21	11,24	11	9	448	450
2600	41,5	41,6	11,2	11,2	5830	5507	384	3028,1	88	88	26	26	652	651	22	22	20	20	92,18	92,18	6	6	0,54	0,58	11,35	11,31	8	9	460	460
2450	37,4	37,5	9,5	9,5	5365	5225	195,8	2574,1	88	88	25	26	643	644	22	22	20	20	92,16	92,17	6,2	6,2	0,57	0,55	11,32	11,42	8	5	510	502
2300	35,6	35,9	8,5	8,6	5181	4996	244,6	2722,8	87	87	26	26	637	637	22	22	20	20	92,17	92,17	6,5	6,5	0,62	0,66	11,48	11,4	5	4	550	551
2150	36,6	36,8	8,2	8,2	4950	4816	179,4	2689,0	86	86	26	26	623	623	22	22	20	20	92,17	92,17	6,6	6,6	0,78	0,8	11,42	11,43	4	5	605	603
2000	37,9	37,9	7,9	7,9	4778	4694	114,2	2648,0	87	87	27	28	608	609	22	22	20	20	92,16	92,17	7	7	0,91	0,93	11,51	11,48	6	6	626	629
1850	39,1	39,4	7,5	7,6	4672	4557	194,2	2131,8	86	86	26	25	594	594	21	21	20	20	92,16	92,16	7,1	7,1	1	1,02	11,45	11,46	6	8	674	670
1700	39	39,1	6,9	6,9	4518	4428	143,4	2259,4	86	86	25	26	584	583	22	22	20	20	92,15	92,15	7,5	7,5	1,22	1,16	11,53	11,54	6	7	713	717
										Re	sultados	obtidos no	ensaio d	o motor N	193 com	TC20PI10) - Opera	ndo com	ETH70ON	430										
Rotação [rpm]	Torqu	e [Nm]	Potê Observa	ncia da [kW]	Vazão r	nássica de	combustív	vel [g/h]	Óleo lut [°	orificante [C]	Admiss	são [°C]	Esca	oe [°C]	Bulbo	seco [°C]	Bulbo ú	mido [°C]	Pressão b [k	arométrica Pa]	Opacida	ide [UB]	со	[%]	CO2	! [%]	HC	ppm]	NOx	[ppm]
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	m _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	24,5	24,3	7	7	14610	14242	418,8	3163,3	81	81	24	25	433	433	22	23	21	21	92,14	92,14	0,05	0,05	0,1	0,09	7	6,95	123	126	181	178
2600	27,5	27,5	7,5	7,5	14197	13961	282,2	3010,6	81	81	25	25	427	427	23	23	21	21	92,12	92,12	0,1	0,1	0,06	0,07	7,27	7,3	125	125	239	241
2450	29,6	29,7	7,6	7,6	13903	13758	180,8	2887,2	81	81	24	25	427	427	22	22	21	21	92,12	92,12	0	0	0,05	0,05	7,54	7,58	123	121	290	287
2300	26,6	26,7	6,3	6,4	13720	13459	316	2973,4	80	80	24	24	429	430	22	23	21	21	92,11	92,11	0,2	0,2	0,05	0,05	7,9	7,85	119	116	328	329
2150	27,7	27,5	6,2	6,2	13414	13185	327,8	2514,9	79	79	24	24	426	425	22	22	21	21	92,11	92,12	0,2	0,3	0,04	0,04	8	7,99	94	92	357	360
2000	28,3	28,4	5,9	5,9	13155	12924	352,6	2358,5	78	78	24	24	413	413	22	22	21	21	92,12	92,12	0	0	0,04	0,04	7,95	7,9	83	85	381	377
1850	29,8	30,1	5,8	5,8	12882	12761	185	2354,6	77	76	25	25	399	400	21	22	21	21	92,12	92,12	0	0	0,04	0,04	7,93	7,95	88	87	396	397
1700	29	29	5,1	5,1	12718	12568	237,4	2274,6	77	76	25	25	393	392	22	22	21	21	92,1	92,1	0	0	0,05	0,04	8,08	8	92	91	402	401
										Re	sultados	obtidos no	ensaio d	o motor N	193 com	TC20PI10) - Opera	ndo com	ETH60OM	440										
Rotação [rpm]	Torqu	e [Nm]	Potê Observa	ncia da [kW]	Vazão r	nássica de	combustív	vel [g/h]	Óleo lut [°	orificante C]	Admiss	são [°C]	Esca	oe [°C]	Bulbo	seco [°C]	Bulbo ú	mido [°C]	Pressão b [k	arométrica Pa]	Opacida	ide [UB]	со	[%]	CO2	! [%]	HC	ppm]	NOx	[ppm]
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	<i>m</i> _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	28,6	28,9	8,2	8,3	13491	13274	272,8	2863,6	82	82	27	26	466	465	24	23	22	22	92,06	92,06	0,05	0,05	0,05	0,05	7,82	7,9	101	106	224	221
2600	30,8	30,8	8,4	8,3	13221	13030	234	2938,5	83	83	25	25	464	460	23	23	23	22	92,06	92,04	0,1	0,1	0,05	0,05	8,19	8,1	112	111	252	245
2450	32,6	32,4	8,3	8,3	12988	12765	259,8	3090,1	82	82	26	25	456	455	23	23	22	22	92,03	92,03	0,05	0,05	0,04	0,04	8,18	8,23	107	109	280	282
2300	27,5	27,6	6,6	6,6	12726	12519	260,4	2861,8	82	82	25	26	448	452	23	23	22	22	92,02	92,02	0,1	0,1	0,04	0,04	8,3	8,25	103	106	312	309
2150	28,9	28,8	6,5	6,5	12491	12291	249,6	2884,6	80	80	26	26	446	445	23	24	22	22	92,02	92,02	0,1	0,1	0,04	0,04	8,05	8,04	85	82	329	332
2000	30	30,2	6,2	6,3	12257	12067	283,2	2415,3	79	79	27	27	439	441	23	23	22	22	92,02	92,02	0,2	0,2	0,05	0,04	8,22	8,17	78	80	354	353
1850	31,8	31,8	6,1	6,1	12033	11883	251,4	2148,0	78	78	26	27	427	428	24	24	23	23	92,02	92,02	0,2	0,2	0,04	0,05	8,18	8,2	78	78	366	365
1700	30.9	30.7	5.5	5.5	11864	11664	295.6	2435.7	78	78	27	26	421	425	23	23	22	22	92.01	92.01	0.4	0.4	0.05	0.05	8.37	8.26	79	77	390	396

											Resultac	los obtidos	s no ensa	io do mot	or M93 c	om TC20I	2117 - Op	erando co	om OD100)										
Rotação [rpm]	Torqu	e [Nm]	Poté Observa	ència ida [kW]	Vazão r	nássica de	combustŕ	vel [kg/h]	Óleo lub [°	orificante [C]	Admis	são [°C]	Escaj	pe [°C]	Bulbo	seco [°C]	Bulbo ú	mido [°C]	Pressão b [k	arométrica Pa]	Opacida	ide [UB]	со	[%]	co	2 [%]	HC	(ppm)	NOx	[ppm]
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	<i>m</i> _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	38,7	38,6	11,1	11	16256	16056	261,2	2756,51	87	87	26	25	607	608	22	22	19	19	92,37	92,36	5,2	5	0,37	0,38	10,84	10,77	13	15	862	877
2600	39,9	39,6	10,8	10,7	15993	15725	350,6	2751,85	88	88	26	26	603	602	22	22	19	19	92,37	92,37	5,2	5,1	0,43	0,44	10,92	10,91	14	15	908	907
2450	35	34,9	9	8,9	15656	15342	442,2	2556,31	87	87	26	26	593	590	21	21	19	19	92,4	92,39	5,6	5,4	0,44	0,41	10,88	10,86	14	13	920	926
2300	34	33,9	8,1	8,1	15208	14978	331,8	2495,48	85	85	25	25	596	596	21	21	18	18	92,38	92,38	5,6	5,4	0,54	0,53	11,02	11,01	14	13	988	970
2150	34,4	34,7	7,7	7,7	14920	14620	457,4	2361,17	84	83	25	26	581	581	20	21	18	18	92,39	92,39	5,2	5,2	0,54	0,55	10,93	10,99	15	15	1012	1010
2000	35,6	35,7	7,4	7,5	14544	14381	274	2141,61	83	83	25	25	565	565	21	21	18	18	92,38	92,38	5,3	5,4	0,56	0,57	10,83	10,86	18	19	998	1003
1850	36,6	36,6	7,1	7	14298	14095	353,2	2069,08	83	82	24	24	552	551	21	21	18	18	92,39	92,39	5,7	5,6	0,59	0,58	10,7	10,88	26	28	1008	1018
1700	34,6	34,3	6,1	6	14010	13845	335	1773,13	81	81	24	24	520	521	20	20	18	18	92,39	92,39	5	5	0,45	0,48	10,55	10,5	38	36	1021	1013
										Re	esultados	obtidos no	ensaio d	lo motor N	A93 com	TC20PI1	7 - Opera	ndo com	ETH70OM	430										
Rotação [rpm]	Torqu	e [Nm]	Poti Observa	ència ida [kW]	Vazão r	nássica de	combustŕ	vel [kg/h]	Óleo lub [°	orificante [C]	Admis	são [°C]	Escaj	pe [°C]	Bulbo :	seco [°C]	Bulbo ú	mido [°C]	Pressão b [ki	arométrica Pa]	Opacida	ide [UB]	со	[%]	co	2 [%]	HC	(ppm)	NOx	[ppm]
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	<i>m</i> _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2450	25,5	25,3	6,5	6,4	17434	17223	335	2267,46	75	76	23	23	358	357	20	20	18	18	92,39	92,38	0,05	0,05	0,11	0,11	6,54	6,55	139	142	395	388
2300	21,9	20,8	5,2	5	17123	16920	355,8	2053,96	75	75	23	23	354	353	20	19	18	18	92,36	92,36	0	0	0,1	0,1	6,85	6,88	146	144	419	418
2150	23	23,2	5,1	5,2	16855	16723	228,2	2082,38	74	74	22	22	353	353	19	19	18	18	92,36	92,36	0	0	0,08	0,08	6,76	6,75	150	152	430	433
2000	22,6	23	4,7	4,8	16689	16553	240	2040	74	74	22	22	336	338	19	19	18	18	92,37	92,37	0	0	0,09	0,08	6,8	6,79	153	151	460	465
1850	23	23,2	4,4	4,4	16527	16383	281,6	1840,91	73	73	22	22	315	316	19	19	18	18	92,36	92,36	0	0	0,08	0,08	6,55	6,52	161	165	466	464
1700	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
										Re	esultados	obtidos no	ensaio d	lo motor N	A93 com	TC20PI1	7 - Opera	ndo com	ETH60OM	A 40										
Rotação [rpm]	Torqu	e [Nm]	Poté Observa	ència ida [kW]	Vazão r	nássica de	combustŕ	vel [kg/h]	Óleo lub [°	orificante [C]	Admis	são [°C]	Escaj	pe [°C]	Bulbo	seco [°C]	Bulbo ú	mido [°C]	Pressão b [ki	arométrica Pa]	Opacida	ide [UB]	co	[%]	co	2 [%]	HC	(ppm)	NOx	(ppm)
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	<i>m</i> _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	22,1	22,3	6,3	6,3	16331	16165	284,2	2102,74	78	77	23	22	331	322	20	20	18	18	92,24	92,23	0	0	0,04	0,04	4,9	4,85	113	111	208	150
2600	16,6	16	4,5	4,3	16022	15936	155,2	1994,85	78	78	22	22	315	314	20	20	18	18	92,24	92,23	0	0	0,03	0,03	5,29	5,44	108	109	200	206
2450	23,4	23	5,9	5,8	15904	15740	266,6	2214,55	78	78	23	22	344	344	19	19	18	18	92,24	92,24	0	0	0,02	0,02	6,14	6,19	109	110	309	319
2300	22,7	21,9	5,4	5,3	15682	15472	335	2256,72	77	76	22	22	364	355	19	19	18	18	92,23	92,23	0	0	0,02	0,02	6,72	6,4	108	107	387	372
2150	23,4	23,7	5,2	5,4	15443	15317	209,8	2162,06	75	75	22	22	369	371	19	19	18	18	92,22	92,23	0	0	0,02	0,02	6,7	6,9	104	105	409	422
2000	25,7	26,3	5,3	5,4	15269	15189	133	2165,41	75	74	22	22	379	385	19	19	18	18	92,2	92,2	0	0	0,02	0,02	7,24	7,15	107	105	481	492
1850	28,2	28,6	5,5	5,5	15164	15080	145,2	2082,64	74	74	22	22	383	384	19	19	18	18	92,21	92,2	0	0	0,02	0,02	7,49	7,44	109	108	569	564
1700	27,4	27,3	4,8	4,8	15042	14970	139,2	1862,07	73	73	21	21	375	375	19	19	18	18	92,2	92,2	0	0	0,03	0,03	7,7	7,64	107	108	619	612

]	Resultado	os obtidos	no ensaio	o do moto	r M93 coi	n TC21.5	PI10 - O	perando c	om OD10	0										
Rotação [rpm]	Torqu	e [Nm]	Poté Observa	incia ida [kW]	Vazão r	nássica de	combustí	vel [g/h]	Óleo lub [ိ	rificante C]	Admiss	são [°C]	Escap	e [°C]	Bulbo s	eco [°C]	Bulbo ú	nido [°C]	Pressão b [kl	arométrica Pa]	Opacid	ade [UB]	со	[%]	co	2 [%]	HC	ppm]	NOx	[ppm]
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	<i>m</i> _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	40,9	40,8	11,7	11,6	11184	11039	188	2776,6	92	92	32	32	597	597	28	28	18	19	92,07	92,07	6,1	6	0,45	0,44	11,18	11,08	15	13	479	485
2600	41,4	41,5	11,2	11,2	10986	10670	393,4	2891,71	91	91	31	32	590	590	28	29	19	19	92,07	92,07	6	5,8	0,45	0,44	11,2	11,1	9	9	505	498
2450	37,8	37,6	9,7	9,6	10633	10392	282,8	3067,89	92	91	33	32	587	588	30	30	19	19	92,09	92,07	6,1	5,9	0,52	0,52	11,32	11,29	8	7	550	552
2300	35,8	36	8,6	8,7	10354	10179	261,2	2411,94	91	91	34	34	583	582	29	29	19	19	92,07	92,07	6,2	6,1	0,65	0,64	11,37	11,29	6	7	620	617
2150	36,9	37,1	8,3	8,3	10150	9994	246,6	2277,37	91	91	34	34	569	567	28	28	19	19	92,09	92,08	6,1	6,1	0,7	0,68	11,49	11,47	6	7	659	656
2000	38,1	38	8	8	9956	9801	232	2405,17	92	92	34	34	554	555	28	28	19	19	92,09	92,09	6,6	6,4	0,84	0,82	11,59	11,55	5	6	717	714
1850	40	40,1	7,7	7,6	9769	9657	181,4	2222,71	92	91	32	33	543	543	28	28	19	19	92,07	92,07	6,8	6,8	0,95	0,91	11,58	11,55	7	7	769	763
1700	38,9	38,7	6,9	6,9	9612	9507	170,6	2215,71	91	91	33	32	530	530	28	28	19	19	92,06	92,06	7,1	7,2	1,08	1,1	11,61	11,68	9	8	810	817
										Res	ultados o	btidos no	ensaio do	motor M	93 com T	C21.5PI	10 - Oper	ando com	ETH60O	M40				-		-				
Rotação [rpm]	Torqu	e [Nm]	Poté Observa	incia ida [kW]	Vazão n	nássica de	combustí	vel [g/h]	Óleo lub [٩	rificante C]	Admiss	são [°C]	Escap	e [°C]	Bulbo s	eco [°C]	Bulbo ú	nido [°C]	Pressão b [ki	arométrica Pa]	Opacid	ade [UB]	со	[%]	co	2 [%]	HC	ppm]	NOx	[ppm]
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	m _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	25,7	26,6	7,4	7,6	8475	8384	127,2	2575,47	82	83	31	31	391	393	29	29	18	18	91,94	91,94	0,1	0,1	0,05	0,05	7,09	7,01	117	120	192	202
2600	23,5	27,3	6,5	7,3	8333	8263	87	2896,55	82	82	31	31	368	380	29	28	18	18	91,94	91,91	0,1	0,1	0,05	0,05	6,48	7,12	120	120	197	219
2450	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2300	24,3	24,1	5,8	5,8	8923	8789	194,4	2481,48	80	80	31	31	361	363	29	29	19	19	91,93	91,93	0,1	0,1	0,04	0,04	7	7,14	102	103	263	257
2150	26,5	26,3	6	6	9061	8971	132,2	2450,83	80	80	31	30	373	372	28	28	19	19	91,96	91,96	0,1	0,1	0,04	0,04	7,71	7,34	104	102	307	306
2000	26,8	27,5	5,6	5,8	9246	9103	201,8	2551,04	80	80	30	30	362	369	28	28	19	19	91,96	91,96	0,2	0,2	0,04	0,04	7,78	8	110	106	337	350
1850	30	29,2	5,7	5,6	9341	9271	110,8	2274,37	79	80	30	30	366	362	28	28	19	19	91,95	91,95	0,2	0,2	0,04	0,04	7,73	7,82	143	132	353	358
1700	29,1	28,3	5,1	5	9595	9386	370	2033,51	80	79	30	30	361	352	27	27	18	18	91,97	91,97	0,4	0,4	0,05	0,04	8,18	8,28	183	178	382	385

]	Resultado	s obtidos	no ensaio	o do moto	M93 co	m TC21.5	PI17 - O	perando c	om OD10	10										
Rotação [rpm]	Torqu	e [Nm]	Poté Observa	ència ida [kW]	Vazão r	nássica de	combustív	vel [g/h]	Óleo lub [°	rificante C]	Admiss	ão [°C]	Escap	oe [°C]	Bulbo s	eco [°C]	Bulbo ú	mido [°C]	Pressão b [k	arométrica Pa]	Opacida	ide [UB]	со	[%]	CO2	! [%]	HC [ppm]	NOx	[ppm]
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	m _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	44	44,7	12,6	12,8	8920	8592	387,6	3046,44	89	88	25	25	567	567	18	18	18	18	92,58	92,57	5,7	5,4	0,33	0,31	11	10,9	35	30	1009	1032
2600	45,3	44,9	12,3	12,2	8535	8369	225,2	2653,64	88	88	25	25	556	551	19	19	18	18	92,58	92,58	5,4	5,3	0,32	0,3	10,83	10,88	23	21	1063	1066
2450	39	39,4	10	10,1	8334	8174	213	2704,23	88	88	24	26	553	552	19	19	18	18	92,58	92,58	5,6	5,4	0,39	0,34	11,01	10,98	21	19	1100	1099
2300	38	38,3	9,1	9,2	8153	7984	220,2	2762,94	87	87	25	26	557	558	19	19	18	18	92,57	92,57	6	5,7	0,48	0,5	11,31	11,3	17	16	1140	1142
2150	38,7	38,6	8,7	8,6	7956	7762	289,2	2414,94	85	85	25	25	549	548	19	19	17	17	92,56	92,56	5,9	5,8	0,57	0,55	11,25	11,29	16	17	1163	1156
2000	39,5	39,4	8,2	8,2	7744	7477	395,6	2429,73	86	85	24	24	533	532	19	19	17	17	92,56	92,57	6	6	0,6	0,61	11,37	11,28	19	19	1153	1149
1850	40,1	40,4	7,7	7,8	7462	7307	232,4	2401,03	85	85	24	24	522	522	19	19	17	17	92,56	92,56	6,2	6,1	0,71	0,7	11,36	11,28	26	25	1154	1166
1700	39,6	39,4	7	7	7290	7094	348,8	2022,94	83	83	23	23	509	510	19	19	17	17	92,56	92,55	6,4	6,4	0,85	0,83	11,28	11,26	27	28	1159	1145
										Res	ultados o	btidos no	ensaio do	o motor M	93 com 1	C21.5PI	17 - Oper	ando com	ETH70O	M30										
Rotação [rpm]	Torqu	e [Nm]	Poté Observa	ência ada [kW]	Vazão r	nássica de	combustív	vel [g/h]	Óleo lub [°	rificante C]	Admiss	ão [°C]	Escap	e [°C]	Bulbo s	eco [°C]	Bulbo ú	mido [°C]	Pressão b [k	arométrica Pa]	Opacida	ide [UB]	со	[%]	CO2	[%]	HC [ppm]	NOx	[ppm]
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	m _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	13,5	13,2	3,8	3,8	7453	7389	132,6	1737,56	75	75	21	21	241	241	18	18	17	17	92,45	92,45	0	0	0,13	0,14	3,95	4,01	110	119	51	49
2600	9,3	8,8	2,5	2,3	7354	7274	200	1440	74	75	21	21	225	221	18	18	17	17	92,41	92,41	0	0	0,13	0,13	3,79	3,7	133	130	59	58
2450	9	10,6	2,2	2,7	7247	7194	132,4	1441,09	75	75	21	21	212	212	17	18	17	17	92,4	92,4	0	0	0,12	0,11	3,77	3,91	137	136	69	76
2300	10,7	11,7	2,5	2,8	7171	7118	117,4	1625,21	74	74	20	21	214	219	17	17	16	17	92,4	92,4	0	0	0,1	0,09	3,94	3,96	129	128	110	122
2150	15,6	14,8	3,5	3,2	7096	7021	166,2	1624,55	73	73	21	21	233	231	17	17	17	17	92,39	92,39	0	0	0,06	0,07	4,63	4,63	116	117	225	216
2000	17,4	16,8	3,6	3,4	6996	6954	104,8	1442,75	72	72	21	21	239	238	17	17	17	17	92,39	92,39	0	0	0,05	0,06	5,01	4,78	111	112	299	281
1850	22,2	20,6	4,3	3,9	6921	6864	136	1508,82	71	71	21	20	239	238	17	17	17	16	92,39	92,39	0	0	0,05	0,05	5,3	5,1	110	111	365	357
1700	20,1	20,3	3,5	3,6	6843	6801	90,8	1665,2	70	71	21	20	243	246	17	17	16	16	92,38	92,38	0	0	0,04	0,04	5,42	5,45	109	107	453	461
										Res	ultados o	btidos no	ensaio do	motor M	93 com 1	C21.5PI1	17 - Oper	ando com	ETH60O	M40										
Rotação [rpm]	Torqu	e [Nm]	Poté Observa	ència ida [kW]	Vazão r	nássica de	combustív	vel [g/h]	Óleo lub [°	rificante C]	Admiss	ão [°C]	Escap	oe [°C]	Bulbo s	eco [°C]	Bulbo ú	mido [°C]	Pressão b [kl	arométrica Pa]	Opacida	ide [UB]	со	[%]	CO2	! [%]	HC [ppm]	NOx	[ppm]
	Teste 1	Teste 2	Teste 1	Teste 2	mi	mf	t	m _c	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2	Teste 1	Teste 2
2750	16,3	16,6	4,6	4,7	6645	6297	630,4	1987,31	76	75	21	21	266	267	18	18	16	16	92,53	92,53	0	0	0,11	0,1	4,54	4,52	102	103	99	99
2600	12,5	14	3,4	3,7	6259	6014	507,8	1736,9	76	75	22	21	236	238	18	18	17	17	92,53	92,53	0	0	0,13	0,12	4	4,1	108	107	60	66
2450	10,4	11,1	2,6	2,7	5963	5837	302,4	1500	74	75	21	21	220	220	18	18	17	17	92,54	92,54	0	0	0,12	0,12	3,8	3,9	93	88	72	75
2300	13,2	13,9	3,1	3,4	7661	7456	465,4	1585,73	72	72	21	21	229	233	18	18	17	17	92,55	92,55	0,2	0,2	0,12	0,11	4,27	4,42	100	98	134	153
2150	19,9	19,1	4,4	4,3	7420	7265	297	1878,79	71	71	21	21	276	275	18	18	16	16	92,55	92,55	0	0	0,05	0,06	5,52	5,35	98	97	358	351
2000	23,2	23,6	4,9	5	7242	7070	319	1941,07	71	71	21	21	301	306	18	18	16	16	92,55	92,56	0,5	0,4	0,04	0,04	6,38	6,44	96	94	504	505
1850	25,9	26,5	5	5,1	7035	6878	305,8	1848,27	70	71	21	21	307	311	18	18	16	16	92,54	92,54	0,1	0	0,04	0,05	6,72	6,75	97	98	597	606
1700	29,5	29,2	5,2	5,1	6854	6740	195	2104,62	71	70	21	21	338	338	18	18	16	16	92,52	92,52	0,4	0,3	0,05	0,05	7,62	7,6	101	100	750	752

APÊNDICE B – MÉDIAS E CORREÇÕES DOS VALORES OBTIDOS

					Med	las dos resulta	dos oblidos n	o ensaio do m	otor M95 Con	11C20F110 -	Operando co	11 0 100			-		
Rotação [rpm]	Torque [Nm]	Potência observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível [g/h]	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm]
2750	39.9	11.5	12.5	3079.56	268.96	31.4	88	26	658	22	20	92.20	5.8	0.47	11.23	10	449
2600	416	11,2	12,5	3028.13	270,37	31,7	88	26	652	22	20	92,20	60	0.56	11,23	9	460
2450	27.5	0.5	10.2	2574.06	270,07	21.2	89	26	644	22	20	02,17	6.2	0,56	11,55	7	506
2430	37,5	9,5	10,2	2374,00	210,95	31,2	00	20	644	22	20	92,17	0,2	0,50	11,37	7	500
2300	35,8	8,6	9,4	2722,81	318,46	26,5	8/	26	637	22	20	92,17	6,5	0,64	11,44	5	551
2150	36,7	8,2	9,2	2688,96	327,92	25,7	86	26	623	22	20	92,17	6,6	0,79	11,43	5	604
2000	37,9	7,9	9,0	2647,99	335,19	25,2	87	28	609	22	20	92,17	7,0	0,92	11,50	6	628
1850	39,3	7,6	8,3	2131,82	282,36	29,9	86	26	594	21	20	92,16	7,1	1,01	11,46	7	672
1700	39,1	6,9	7,8	2259,41	327,45	25,8	86	26	584	22	20	92,15	7,5	1,19	11,54	7	715
					Médias	dos resultados	obtidos no en	nsaio do moto	M93 com To	C20PI10 - Op	erando com I	ETH70OM30					
Rotação [rpm]	Torque [Nm]	Potência observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm]
2750	24.4	7.0	7.6	21(2.22	451.00	20.0	01	25	422	22	21	02.14	0.1	0.10	6.00	125	100
2730	24,4	7,0	7,8	3103,52	431,90	28,8	81	23	435	23	21	92,14	0,1	0,10	6,98	123	180
2600	27,5	7,5	8,2	3010,63	401,42	32,5	81	25	427	23	21	92,12	0,1	0,07	7,29	125	240
2450	29,7	7,6	8,3	2887,17	379,89	34,3	81	25	427	22	21	92,12	0,0	0,05	7,56	122	289
2300	26,7	6,4	7,1	2973,42	468,25	27,8	80	24	430	23	21	92,11	0,2	0,05	7,88	118	329
2150	27,6	6,2	6,8	2514,95	405,64	32,1	79	24	426	22	21	92,12	0,3	0,04	8,00	93	359
2000	28.4	5.9	6.5	2358.48	399.74	32.6	78	24	413	22	21	92.12	0.0	0.04	7.93	84	379
1850	30.0	5.8	65	2354,59	405.96	32,0	77	25	400	22	21	92,12	0,0	0.04	7.94	88	307
1700	20,0	5,0	0,J E 0	20074.07	446.01	20.2	77	25	400	22	21	02.10	0,0	0.04	0.04	00	400
1/00	29,0	3,1	3,8	22/4,04	440,01	29,2	// 	25	 M02	22	21	92,10 37116000440	0,0	0,05	0,04	92	402
I			1		Medias	uos resultados	obudos no e	usaio do moto	10195 com T	.20P110 - Op	erando com I	21 H00OM40					
Rotação [rpm]	Torque [Nm]	Potência observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível [g/h]	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm]
2750	28.8	8.3	8.9	2863.64	347.11	36.1	82	27	466	24	22	92.06	0.1	0.05	7.86	104	223
2600	30.8	84	91	2938.46	351 91	35.6	83	25	462	23	23	92.05	0.1	0.05	815	112	249
2450	20,0	0,7	0.2	2000.07	272.20	22.6	82	25	462	23	25	02,03	0,1	0,05	8.21	109	291
2450	32,5	8,3	9,3	3090,07	372,30	33,0	82	26	456	23	22	92,03	0,1	0,04	8,21	108	281
2300	27,6	6,6	7,4	2861,75	433,60	28,9	82	26	450	23	22	92,02	0,1	0,04	8,28	105	311
2150	28,9	6,5	7,4	2884,62	443,79	28,2	80	26	446	24	22	92,02	0,1	0,04	8,05	84	331
2000	30,1	6,3	6,9	2415,25	386,44	32,4	79	27	440	23	22	92,02	0,2	0,05	8,20	79	354
1850	31.8	6.1	6.7	2147.97	352.13	35.6	78	27	428	24	23	92.02	0.2	0.05	8.19	78	366
1700	30.8	5.5	64	2435.72	442.86	28.3	78	27	423	23	22	92.01	0.4	0.05	8 32	78	393
1700	50,0	5,5	0,4	2435,12	412,00	20,5	70	21	425	25	22	72,01	0,4	0,05	0,52	70	373
					Méd	ias dos resulta	dos obtidos n	o ensaio do m	otor M93 con	TC20PI17 -	Operando co	m OD100					
			1	1	Med	ab dob rebaild	000 0000000 11	1		110201117	Operando eo						
Rotação [rpm]	Torque [Nm]	Potência Observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível [g/h]	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm]
Rotação [rpm]	Torque [Nm]	Potência Observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível [g/h] 2756 51	Consumo específico [g/kWh] 249.46	Eficiência [%]	Óleo lubrificante [°C] 87	Admissão [°C] 26	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa] 92 37	Opacidade [UB]	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm]
Rotação [rpm] 2750	Torque [Nm] 38,7	Potência Observada [kW] 11,1	Potência corrigida [kW] 11,7	Vazão mássica de combustível [g/h] 2756,51	Consumo específico [g/kWh] 249,46	Eficiência [%]	Óleo lubrificante [°C] 87	Admissão [°C] 26	Escape [°C] 608	Bulbo seco [°C] 22 22	Bulbo úmido [°C]	Pressão barométrica [kPa] 92,37	Opacidade [UB] 5,1	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm] 870
Rotação [rpm] 2750 2600	Torque [Nm] 38,7 39,8	Potência Observada [kW] 11,1 10,8	Potência corrigida [kW] 11,7 11,5	Vazão mássica de combustível [g/h] 2756,51 2751,85	Consumo específico [g/kWh] 249,46 255,99	Eficiência [%]	Óleo lubrificante [°C] 87 88	Admissão [°C] 26 26	Escape [°C] 608 603	Bulbo seco [°C] 22 22	Bulbo úmido [°C] 19 19	Pressão barométrica [kPa] 92,37 92,37	Opacidade [UB] 5,1 5,2	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm] 870 908
Rotação [rpm] 2750 2600 2450	Torque [Nm] 38,7 39,8 35,0	Potência Observada [kW] 11,1 10,8 9,0	Potência corrigida [kW] 11,7 11,5 9,6	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31	Consumo específico [g/kWh] 249,46 255,99 285,62	Eficiência [%] 33,8 33,0 29,6	Óleo lubrificante [°C] 87 88 87	Admissão [°C] 26 26 26	Escape [°C] 608 603 592	Bulbo seco [°C] 22 21	Bulbo úmido [°C] 19 19 19	Pressão barométrica [kPa] 92,37 92,37 92,40	Opacidade [UB] 5,1 5,2 5,5	CO [%] 0,38 0,44 0,43	CO2 [%] 10,81 10,92 10,87	HC [ppm] 14 15 14	NOx [ppm] 870 908 923
Rotação [rpm] 2750 2600 2450 2300	Torque [Nm] 38,7 39,8 35,0 34,0	Potência Observada [kW] 11,1 10,8 9,0 8,1	Potência corrigida [kW] 11,7 11,5 9,6 8,7	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48	Consumo específico [g/kWh] 249,46 255,99 285,62 308,08	Eficiência [%] 33,8 33,0 29,6 27,4	Óleo lubrificante [°C] 87 88 87 85	Admissão [°C] 26 26 26 25	Escape [°C] 608 603 592 596	Bulbo seco [°C] 22 21 21	Bulbo úmido [°C] 19 19 19 18	Pressão barométrica [kPa] 92,37 92,37 92,40 92,38	Opacidade [UB] 5,1 5,2 5,5 5,5 5,5	CO [%] 0,38 0,44 0,43 0,54	CO2 [%] 10,81 10,92 10,87 11,02	HC [ppm] 14 15 14 14 14	NOx [ppm] 870 908 923 979
Rotação [rpm] 2750 2600 2450 2300 2150	Torque [Nm] 38,7 39,8 35,0 34,0 34,6	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17	Consumo específico [g/kWh] 249,46 255,99 285,62 308,08 306,65	Eficiência [%] 33,8 33,0 29,6 27,4 27,5	Óleo lubrificante [°C] 87 88 87 88 87 85 84	Admissão [°C] 26 26 26 25 26	Escape [°C] 608 603 592 596 581	Bulbo seco [°C] 22 21 21 21 21	Bulbo úmido [°C] 19 19 19 18 18	Pressão barométrica [kPa] 92,37 92,37 92,40 92,38 92,39	Opacidade [UB] 5,1 5,2 5,5 5,5 5,5 5,2	CO [%] 0,38 0,44 0,43 0,54 0,55	CO2 [%] 10,81 10,92 10,87 11,02 10,96	HC [ppm] 14 15 14 14 14 15	NOx [ppm] 870 908 923 979 1011
Rotação [rpm] 2750 2600 2450 2300 2150 2000	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61	Consumo específico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4	Óleo lubrificante [°C] 87 88 87 88 87 85 84 83	Admissão [°C] 26 26 26 26 25 26 25 26 25	Escape [°C] 608 603 592 596 581 565	Bulbo seco [°C] 22 21 21 21 21 21	Bulbo úmido [°C] 19 19 19 19 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,40 92,38 92,39 92,38	Opacidade [UB] 5,1 5,2 5,5 5,5 5,5 5,2 5,4	CO [%] 0,38 0,44 0,43 0,54 0,55 0,57	CO2 [%] 10,81 10,92 10,87 11,02 10,96 10,85	HC [ppm] 14 15 14 14 15 19	NOx [ppm] 870 908 923 979 1011 1001
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7 36,6	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,1	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08	Consumo específico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8	Óleo lubrificante [°C] 87 88 87 85 85 84 83 83	Admissão [°C] 26 26 26 25 25 26 25 24	Escape [°C] 608 603 592 596 581 581 552	Bulbo seco [°C] 22 21 21 21 21 21 21 21 21	Bulbo úmido [°C] 19 19 19 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,40 92,38 92,39 92,38 92,39	Opacidade [UB] 5,1 5,2 5,5 5,5 5,5 5,2 5,2 5,4 5,7	CO [%] 0,38 0,44 0,43 0,54 0,55 0,55 0,57 0,59	CO2 [%] 10,81 10,92 10,87 11,02 10,96 10,85 10,79	HC [ppm] 14 15 14 14 15 19 27	NOx [ppm] 870 908 923 979 1011 1001 1013
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7 36,6 34,5	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,5 7,1 6,1	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 65	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13	Consumo específico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49 293,08	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,8	Óleo lubrificante [°C] 87 88 87 85 84 83 83 83 81	Admissão [°C] 26 26 26 25 26 25 26 25 24 24	Escape [°C] 608 603 592 596 581 565 552 521	Bulbo seco [°C] 22 21 21 21 21 21 21 21 20	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,40 92,38 92,39 92,38 92,39 92,38 92,39 92,39	Opacidade [UB] 5,1 5,2 5,5 5,5 5,2 5,4 5,7 5,0	CO [%] 0,38 0,44 0,43 0,54 0,55 0,57 0,59 0,47	CO2 [%] 10,81 10,92 10,87 11,02 10,96 10,85 10,79 10,53	HC [ppm] 14 15 14 14 15 19 27 37	NOx [ppm] 870 908 923 979 1011 1001 1013 1017
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7 36,6 34,5	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,1 6,1 Potência	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13	Consumo específico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49 293,49 293,49 293,08 Médias	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,8 dos resultados	Óleo lubrificante [°C] 87 88 87 85 84 83 83 83 83 83 81 obtidos no el Óleo	Admissão [°C] 26 26 26 25 26 25 24 24 24 msaio do moto	Escape [°C] 608 603 592 596 581 565 552 521 * M93 com Te	Bulbo seco [°C] 22 21 21 21 21 21 20 C20PI17 - Op	Bulbo úmido [°C] 19 19 19 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,40 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39	Opacidade [UB] 5,1 5,2 5,5 5,5 5,5 5,2 5,4 5,7 5,0	CO [%] 0,38 0,44 0,43 0,54 0,55 0,57 0,59 0,47	CO2 [%] 10,81 10,92 10,87 11,02 10,96 10,85 10,79 10,53	HC [ppm] 14 15 14 14 15 19 27 37	NOx [ppm] 870 908 923 979 1011 1001 1013 1017
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 Rotação [rpm]	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7 36,6 34,5 Torque [Nm]	Potência Observada [kW] 11,1 10,8 9,0 9,0 8,1 7,7 7,5 7,1 6,1 Potência Observada [kW]	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 6,5 6,5 90tência corrigida [kW]	Vazio missica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2495,48 2495,48 2495,48 2495,48 1773,13 Vazio missica de combustível [g/h]	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 Wédias Consumo especifico [g/kWh]	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%]	Óleo [°C] 87 88 87 85 84 83 83 83 83 83 83 83 83 81 obtidos no e: [°C]	Admissão [°C] 26 26 26 25 26 25 24 25 24 asaio do moto Admissão [°C]	Escape [°C] 608 603 592 596 581 565 552 521 * M93 com Te Escape [°C]	Bulbo seco [°C] 22 21 21 21 21 20 C20P117 - Op °C] Bulbo seco [°C]	Bulbo úmido [°C] 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,40 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39	Opacidade [UB] 5.1 5.2 5.5 5.5 5.2 5.4 5.7 5.0 0pacidade [UB]	CO [%] 0,38 0,44 0,43 0,54 0,55 0,57 0,59 0,47 CO [%]	CO2 [%] 10.81 10.92 10.97 11.02 10.96 10.85 10.79 10.53 CO2 [%]	HC [ppm] 14 15 14 15 19 27 37 HC [ppm]	NOx [ppm] 870 908 923 973 1011 1001 1013 1017 NOx [ppm]
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 Rotação [rpm] 2750 2600	Torque [Nm] 38,7 39,8 35,0 34,6 35,7 36,6 34,5 Torque [Nm] -	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,1 6,1 Potência Observada [kW]	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 9,0 6,5 Potência corrigida [kW]	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2495,48 2495,48 2495,48 2495,48 2495,48 2495,49 141,61 2069,08 1773,13 Vazão mássica de combustível [g/h]	Consumo específico [g/kWh] 249,46 255,99 285,62 306,65 287,46 293,49 293,49 293,08 Médias Consumo específico [g/kWh]	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,8 dos resultados Eficiência [%]	Óleo lubificante [°C] 87 88 87 85 84 83 83 83 83 1 obtidos no ei Óleo lubificante [°C] -	Admissão [°C] 26 26 25 26 25 24 24 staio do moto Admissão [°C] -	Escape [°C] 608 603 592 596 581 565 552 521 • M93 com Tr Escape [°C] -	Bulbo seco [°C] 22 21 21 21 21 21 21 21 21 21	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39	Opacidade [UB] 5,1 5,2 5,5 5,2 5,5 5,2 5,4 5,7 5,0 Opacidade [UB] -	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%]	CO2 [%] 10,81 10,92 10,87 11,02 10,96 10,85 10,79 10,53 CO2 [%]	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] -	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] -
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 Rotação [rpm] 2750 2600	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - -	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,7 7,5 7,1 6,1 Potência Observada [kW] -	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] -	Vazão míssica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão míssica de combustível [g/h]	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49 293,49 293,30 Médias Consumo específico [g/kWh]	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,8 28,8 dos resultados Eficiência [%]	Óleo lubificante [°C] 87 88 87 85 84 83 81 obidos no ei Óleo lubificante [°C] -	Admissão [°C] 26 26 25 26 25 24 24 24 24 24 24 24 24 24 24 (°C] - - -	Escape [°C] 608 603 592 596 581 565 552 521 M93 com Tt Escape [°C] -	Bulbo seco [°C] 22 21 21 21 21 21 21 21 20 20P117 - Op [°C] - -	Bulbo úmido [°C] 19 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,27 92,24 92,38 92,39 92,3	Opacidade [UB] 5,1 5,2 5,5 5,2 5,4 5,7 5,0 Opacidade [UB] - -	CO [%] 0,38 0,44 0,54 0,55 0,57 0,59 0,47 CO [%]	CO2 [%] 10,81 10,92 10,87 11,02 10,96 10,85 10,79 10,53 CO2 [%]	HC [ppm] 14 15 14 14 15 19 27 37 HC [ppm] - -	NOx[ppm] 870 908 923 979 1011 1013 1017 NOx[ppm] -
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 Rotação [rpm] 2750 2600 2450	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7 36,6 34,5 Torque [Nm] - - 25,4	Potência Observada [kW] 11,1 10,8 9,0 9,0 8,1 7,7 7,5 7,1 6,1 0bservada [kW] - - 6,5	Potência comigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência comigida [kW] - - 6,7	Vazio missica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2495,48 2495,48 2495,48 2495,48 1773,13 Vazio missica de [g/h] - - 2267,46	Consumo especifico [g/kWh] 249,46 255,59 285,62 306,65 287,46 293,08 Médias Consumo especifico [g/kWh] - - 351,54	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1	Óleo [°C] 87 88 87 88 83 83 83 83 83 83 83 83 83 83 90 90 90 90 90 90 90 90 90 90 90 90 90	Admissão [°C] 26 26 25 26 25 24 24 asaio do moto [°C] - - - 23	Escape [°C] 608 603 596 581 565 521 r M93 com Te Escape [°C] - - 358	Bulbo seco [°C] 22 21 21 21 21 21 21 20 C20P117 - Op [°C] Bulbo seco [°C] - - 20	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,40 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 71700M30 Pressão barométrica [kPa]	Opacidade [UB] 5.1 5.2 5.5 5.2 5.4 5.7 5.0 5.0 0pacidade [UB] - - 0,1	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - -	CO2 [%] 10.81 10.92 10.97 11.02 10.96 10.85 10.79 10.53 CO2 [%]	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] - - - - - - - - - - -
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 Rotação [rpm] 2750 2600 2450 2300	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - - - - - - - - - - - - -	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,1 6,1 Observada [kW] - - 6,5 5,1	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] - - 6,7 5,3	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão mássica de combustível [g/h] - - 2267,46 2053,96	Consumo especifico [g/kWh] 249,46 255,99 285,62 306,65 287,46 293,49 293,49 293,64 Médias Consumo específico [g/kWh] - - 351,54 402,74	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4	Óleo lubificante [°C] 87 88 87 88 87 83 83 83 83 83 1 obtidos no ei Óleo lubificante [°C] - 76 75	Admissão [°C] 26 26 25 26 25 24 24 24 asaio do moto [°C] - - 23 23 23	Escape [°C] 608 603 592 596 581 565 521 M93 com Tr Escape [°C] - - - 358 354	Bulbo seco [°C] 22 21 21 21 21 21 21 21 21 21	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 8 werando com I [°C] - - - 18 18	Pressão barométrica [kPa] 92,37 92,37 92,37 92,38 92,39 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 TH70OM30 Pressão barométrica [kPa]	Opacidade [UB] 5,1 5,2 5,5 5,2 5,2 5,4 5,7 5,0 Opacidade [UB] - 0,1 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - 0,11 0,10	CO2 [%] 10,81 10,92 10,87 11,02 10,95 10,79 10,53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141 145	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] - - 392 419
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 Rotação [rpm] 2750 2600 2450 2300 2150	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - - - 25,4 21,4 23,1	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,5 7,7 7,5 7,1 6,1 0bservada [kW] - - - 6,5 5,1 5,2	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] - - 6,7 5,3 5,4	Vazão míssica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão míssica de combustível [g/h] - 2267,46 2053,96 2053,96	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49 293,49 293,30 Médias Consumo específico [g/kWh] - - - - - - - - - - - - - - - - - - -	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,8 28,8 28,8 cs resultados Eficiência [%] - - - 37,1 32,4 32,2	Óleo lubificante [°C] 87 88 87 85 84 83 81 obidos no ei Óleon lubificante [°C] - - 76 75 74	Admissão [°C] 26 26 25 26 25 24 24 24 24 24 24 24 24 (°C] °C] °C] °C] °C] °C] 25 26 25 26 25 26 25 26 25 26 25 26 25 26 26 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	Escape [°C] 608 603 592 596 581 565 552 521 Escape [°C] - - - - - - - - - - - - -	Bulbo seco [°C] 22 21 21 21 21 21 21 21 21 20 220P117 - Op [°C] - - - 20 20 19	Bulbo úmido [°C] 19 19 19 19 19 18 18 18 18 18 18 18 18 18 20 6 (°C) - - - 18 18 18 18	Pressão barométrica [kPa] 92,37 92,27 92,24 92,38 92,39 92,39 92,39 92,39 92,39 92,39 Pressão barométrica [kPa] - - - 92,39 92,36	Opacidade [UB] 5,1 5,2 5,5 5,2 5,4 5,7 5,0 Opacidade [UB] - - 0,0 0,0 0,0	CO [%] 0.38 0.44 0.43 0.55 0.57 0.59 0.47 CO [%] - - 0.11 0.10 0.08	CO2 [%] 10,81 10,92 10,87 11,02 10,96 10,85 10,79 10,53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 14 15 19 27 37 HC [ppm] - - - 141 145 151	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] - - - - - 392 419 432
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 1850 1700 2000 2600 2450 2300 2450 2300 2450 2300 2150 2000	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - - - 25,4 21,4 22,8	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] - - 6,7 5,3 5,4 5,0	Vazio missica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2361,17 2141,61 2069,08 1773,13 1773,13 Vazio missica de combustível [g/h] - - 2267,46 2082,38 2040,00	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 Wédias Consumo especifico [g/kWh] - - 351,54 402,74 402,74	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4 32,4 32,4 30,4	Óleo hbtificante [°C] 87 88 87 88 87 88 83 83 83 81 sobtidos no ei °C] - - 76 75 74	Admissão [°C] 26 26 25 26 25 24 24 24 asaio do moto [°C] - - - 23 23 23 22 22 22	Escape [°C] 608 603 596 581 565 521 M93 com Te Escape [°C] - - - 358 354 353 337	Bulbo seco [°C] 22 21 21 21 21 21 21 20 20 200P117 - Op [°C] Bulbo seco [°C] - - 20 20 20 19 19	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,37 92,39 92,39 92,39 92,39 92,39 92,39 92,39 7TH70OM30 Pressão barométrica [kPa] - - - 92,39 92,36 92,37	Opacidade [UB] 5.1 5.2 5.5 5.2 5.4 5.7 5.0 0pacidade [UB] - - 0,1 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - 0,11 0,10 0,09	CO2 [%] 10.81 10.92 10.97 11.02 10.96 10.79 10.53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 37 HC [ppm] - - 141 145 15 141 145 151 152	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] - - - - - - - - - - - - -
Rotação [rpm] 2750 2600 2450 2150 2000 1850 1700 Rotação [rpm] 2750 2600 2450 2450 2450 2300 2150 2000 1850	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - - - - - - - - - - - - -	Potência Observada [kW] 11,1 11,8 9,0 8,1 7,7 7,1 6,1 0bservada [kW] - - 6,5 5,1 5,2 4,8 4,4	Potência comigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência comigida [kW] - - 6,7 5,3 5,4 5,0 4,6	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão mássica de [g/h] - 2267,46 2053,96 2082,38 2040,00 1840,91	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49 293,49 293,49 293,49 293,49 293,49 Consumo especifico [g/kWh] - - 351,54 402,74 404,35	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 29,6 10,1 20,4 20,5 20,4 20,5 20,4 20,4 20,5 20,4 20,4 20,5 20,4 20,5 20,4 20,4 20,5 20,4 20,4 20,5 20,5 20	Óleo lubificante [°C] 87 88 87 88 87 83 83 83 83 83 83 83 81 obtidos no e [°C] - - - 76 75 74 74 74 73	Admissão [°C] 26 26 25 26 25 26 25 24 24 1saio do moto [°C] - - 23 23 23 22 22 22 22	Escape [°C] 608 603 592 596 581 565 521 M93 com Tr Escape [°C] - - 358 354 353 337 316	Bulbo seco [°C] 22 21 21 21 21 21 21 21 21 20 C20P117 - Op [°C] - - 20 20 20 19 19 19 19 19	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 berando com I Pulpo úmido [°C] - - 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,37 92,38 92,39 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,30 barométrica [kPa] - - - 92,39 92,36 92,36 92,37	Opacidade [UB] 5,1 5,2 5,5 5,2 5,2 5,2 5,4 5,7 5,0 Opacidade [UB] - 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - 0,11 0,10 0,08 0,09 0,08	CO2 [%] 10,81 10,92 10,87 10,96 10,85 10,79 10,53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141 145 151 152 163	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] - - 392 419 432 465
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 2500 2450 2750 2600 2450 2300 2150 2000 1850 1700	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - - - 25,4 21,4 22,8 23,1 - -	Potência Observada [kW] 11,1 10,8 9,0 9,0 8,1 7,7 7,5 7,7 7,7 7,5 7,1 6,1 0bservada [kW] - - - 5,1 5,2 4,8 4,4 4,4	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] - - 6,7 5,3 5,4 5,0 4,6	Vazão míssica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão míssica de combustível [g/h] - - 2267,46 2082,38 2040,00 1840,91	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49 293,49 293,49 293,08 Médias Consumo especifico [g/kWh] - - - - - - - - - - - - - - - - - - -	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 27,5 29,4 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,9 4 37,1 32,4 32,2 30,4 31,2 -	Óleo hubificante [°C] 87 88 87 88 83 81 obtidos no et Óleo hubificante [°C] - 76 75 74 74 74	Admissão [°C] 26 26 25 26 25 24 24 24 24 24 24 24 24 52 6 25 26 25 26 25 26 25 24 24 24 24 24 24 24 22 22 22 22 22 22	Escape [°C] 608 603 592 596 581 565 552 521 M93 com Tr Escape [°C] - - - 358 354 353 337 316	Bulbo seco [°C] 22 21 21 21 21 21 21 20 220P117 - Op [°C] - - - - 20 20 19 19 19 19	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,27 92,24 92,38 92,39 92,39 92,39 92,39 92,39 92,39 27H70OM30 Pressão barométrica [kPa] - - - - 92,39 92,36	Opacidade [UB] 5,1 5,2 5,5 5,2 5,2 5,4 5,7 5,0 Opacidade [UB] - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,55 0,57 0,59 0,47 CO [%] - - - 0,11 0,10 0,08 0,09 0,08	CO2 [%] 10,81 10,92 10,87 11,02 10,96 10,85 10,79 10,53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - - 141 145 15 15 15 15 15	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] - - - - 392 419 432 463 463 465
Rotação [rpm] 2750 2600 2450 2150 2000 1850 1700 2000 1850 2750 2600 2450 2300 2450 2300 1850 1700	Torque [Nm] 38,7 39,8 35,0 34,0 35,0 35,7 36,6 34,5 Torque [Nm] - - - - - - - - - - - - -	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] - - 6,7 5,3 5,4 5,0 4,6 -	Vazio missica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazio missica de combustível [g/h] - - 2267,46 2053,96 2082,38 2040,00 1840,91 -	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 306,65 287,46 293,08 Wédias Consumo especifico [g/kWh] - - - - 351,54 402,74 404,35 429,47 418,39 -	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4 32,4 32,4 30,4 31,2 - -	Óleo Íleo (°C) 87 88 87 88 87 88 83 83 83 83 83 83 83 83 83	Admissão [°C] 26 26 25 26 25 24 34 asaio do moto [°C] - - 23 23 23 23 22 22 22 22 22 22 22 22	Escape [°C] 608 603 596 581 565 521 M93 com Te Escape [°C] - - 358 354 353 337 316 - M93 com Te	Bulbo seco [°C] 22 21 21 21 21 21 20 C20P1I7 - OF Bulbo seco [°C] - - 20 20 20 19 19 19 19 - - - 20 - - - - - - - - - - - - -	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,47 92,40 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 7TH70OM30 Pressão barométrica [kPa] - - 92,39 92,36 92,36 92,36	Opacidade [UB] 5.1 5.2 5.5 5.2 5.4 5.7 5.2 5.4 5.7 5.0 0pacidade [UB] - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - - 0,11 0,10 0,08 - -	CO2 [%] 10.81 10.92 10.97 11.02 10.96 10.53 CO2 [%] CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141 145 15 163 -	NOx [ppm] 870 908 973 979 1011 1001 1013 1017 NOx [ppm] - - - - - - - - - - - - -
Rotação [rpm] 2750 2600 2450 2150 2000 1850 1700 2000 1850 1700 2450 2300 2150 2000 1850 2300 2150 2000 1850 1700	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - - - - - - - - - - - - -	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,1 6,1 0bservada [kW] - - 6,5 5,1 5,2 4,8 4,4 4,4	Potência comigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência comigida [kW] - - 6,7 5,3 5,4 5,0 4,6 -	Vazão mássica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão mássica de [g/h] - 2267,46 2053,96 2082,38 2040,00 1840,91 -	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49 293,49 293,49 293,49 293,49 293,49 Médias Consumo específico [g/kWh] - - 351,54 402,74 404,35 429,47 418,39 - - Médias	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,7 27,1 27,4 27,5 29,4 28,8 28,8 28,8 28,7 27,1 27,1 27,1 27,1 27,1 27,2 27,4 28,8 28,8 28,8 28,7 27,1 27,1 27,1 27,1 27,1 27,1 27,2 27,1 27,1 27,2 27,1 27,1 27,2 27,1 27,1 27,2 27,1 27,1 27,2 27,1 27,1 27,2 27,1 27,2 27,1 27,2 27,1 27,2 27,1 27,2 27,1 27,2 27,1 27,2 27,1 27,2 27,1 27,2 27,1 27,2 27,1 27,2 27,2 27,1 27,2 27,2 27,2 27,1 27,2 27	Óleo lubificante [°C] 87 88 87 83 83 83 83 83 83 83 83 83 83 83 90 100 90 100 90 90 90 90 90 90 90 90 90 90 90 90 9	Admissão [°C] 26 26 25 26 25 24 24 1saio do moto [°C] - 23 23 23 22 22 22 22 22 22 22 22 22 22	Escape [°C] 608 603 592 596 581 565 521 * M93 com Tr - - 358 354 353 337 316 - - M93 com Tr	Bulbo seco [°C] 22 21 21 21 21 21 21 21 21 21	Bulbo úmido [°C] 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,30 92,38 92,39 92,38 92,39 92,38 92,39 92,39 92,39 92,39 92,39 92,30 barométrica [kPa] - - 92,39 92,36 92,36 92,36 92,36 92,36 92,37 92,36 92,36 92,37 92,36 92,36 92,37 92,36 92,36 92,37 92,36 92,37 92,36 92,36 92,37 92,36 92,36 92,37 92,36 92,37 92,36 92,37 92,37 92,38 92,39 92,36 92,39 92,36 92,37 92,36 92,37 92,36 92,37 92,37 92,37 92,37 92,37 92,37 92,37 92,37	Opacidade [UB] 5,1 5,2 5,5 5,2 5,2 5,4 5,7 5,0 Opacidade [UB] - 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - 0,11 0,10 0,08 0,09 0,09 0,09	CO2 [%] 10,81 10,92 10,87 10,96 10,85 10,79 10,53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141 145 151 152 - - - - - - - - -	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] - - 392 419 432 463 465 -
Rotação [rpm] 2750 2600 2450 2150 2000 1850 1700 2000 2000 2450 2300 2450 2300 2450 2300 2450 2000 1850 1700	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - - 25,4 21,4 22,8 23,1 - Torque [Nm]	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5	Potência corrigida [kW] 111,7 111,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] Potência corrigida [kW]	Vazio missica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazio missica de combustível 2040,00 1840,91 -	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 306,65 287,46 293,08 Wédias Consumo especifico [g/kWh] - - - - - - - - - - - - - - - - - - -	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4 32,4 32,4 31,2 - dos resultados Hiciência [%]	Óleo hubrificante [°C] 87 88 87 88 87 88 83 83 81 sobtidos no et °C] - - 76 75 74 73 - - obtidos no et °C] - - - - - - - - - - - - -	Admissão [°C] 26 26 25 26 25 24 24 24 24 24 24 24 24 24 24 24 27 22 22 22 22 22 22 22 22 22 22 22 22	Escape [°C] 608 603 596 581 565 521 M93 com Te - - - - - - - - - - - - -	Bulbo seco [°C] 22 21 21 21 21 21 21 21 20 20 20 20 20 20 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,37 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,30 barométrica [kPa] - - - - - - - - - - - - - - - - - - -	Opacidade [UB] 5,1 5,2 5,5 5,5 5,2 5,2 5,4 5,7 5,2 5,4 5,7 5,0 0pacidade [UB] - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - - 0,11 0,10 0,09 0,08 - - CO [%]	CO2 [%] 10.81 10.92 10.92 10.96 10.95 10.79 10.53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 41 HC [ppm] - - 141 145 15 163 - HC [ppm] HC [ppm]	NOx [ppm] 870 908 923 927 1011 1001 1013 1017 NOx [ppm] - - - - - - - - - - - - -
Rotação [rpm] 2750 2600 2450 2150 2000 1850 1700 2000 1850 2750 2450 2450 2450 2450 2450 2450 2450 2150 2000 11850 1700 2450 2450 2450 2450 2450 2450 2450 24	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7 36,6 34,5 Torque [Nm] - - - - - - - - -	Potência Observada [kW] 11,1,4 11,0,8 9,0 8,1 7,7 7,1 6,1 0bservada [kW] - - 6,5 5,1 5,2 4,8 4,4 4,4 - Potência Observada [kW] -	Potência corrigida [kW] 111,7 11,5 9,6 8,7 8,3 8,0 7,6 5,5 5,5 5,5 5,5 5,3 5,4 5,0 4,6 - - Potência corrigida [kW] - Potência corrigida [kW] 9,6 8,7 7,6 5,5 5,3 5,4 5,5 9,6 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7	Vazão mássica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão mássica de combustível [g/h] - - 2267,46 2053,96 2082,38 2040,00 1840,91 - - - - - - - - - - - - - - - - - - -	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 306,65 287,46 293,08 306,65 287,46 293,08 293,08 Médias Consumo específico 15,54 402,74 404,35 - 351,54 402,74 404,35 - 351,54 402,74 404,35 - - - - - - - - - - - - - - - - - - -	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4 32,2 30,4 31,2 - - dos resultados Eficiência [%]	Óleo lubificante [°C] 87 88 87 87 88 83 83 83 83 83 83 83 83 83 83 90 100 100 100 100 100 100 100 100 100	Admissão [°C] 26 26 25 26 25 24 33 24 asaio do moto [°C] - 23 23 22 22 22 22 22 22 22 22 22 22 22	Escape [°C] 608 603 596 581 565 521 793 com Tr Escape [°C] - 337 316 - Escape [°C] 327	Bulbo seco [°C] 22 21 21 21 21 21 21 21 21 21	Bulbo úmido [°C] 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,40 92,38 92,39 92,38 92,39 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,30 barométrica [kPa] - - 92,39 92,36 92,37 92,36 92,37 92,36 92,37 92,39 92,36 92,26 92,36 92,26 92,27 92,26 92,27 92,26 92,27 92,26 92,27 92,26 92,27 92,27 92,26 92,27	Opacidade [UB] 5,1 5,2 5,5 5,2 5,2 5,4 5,7 5,0 0pacidade [UB] - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - 0,11 0,10 0,08 0,08 - - CO [%] CO [%]	CO2 [%] 10.81 10.92 10.87 10.96 10.85 10.79 10.53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141 145 151 152 163 - HC [ppm] 112	NOx [ppm] 870 908 923 971 1011 1001 1013 1017 NOx [ppm] - 392 419 432 463 - NOx [ppm] 179
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 1850 1700 2750 2600 2450 2300 2150 2000 1850 1700 1700	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - - 25,4 21,4 23,1 22,8 23,1 - Torque [Nm] - - - - - - - - - - - - -	Potência Observada [kW] 11,1 10,8 9,0 9,0 8,1 7,7 7,5 7,5 7,5 7,5 7,5 7,1 6,1 0 bservada [kW] - - - - - - - - - - - - - - - - - - -	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] - - - 6,7 5,4 5,0 4,6 - - Potência corrigida [kW] - - - 6,7 9,6 6,5	Vazão míssica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão míssica de combustível [g/h] - - 2053,96 2082,98 2040,00 1840,91 - Vazão míssica de combustível [g/h] 2102,74 1994,85	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49 293,49 293,49 293,49 293,49 293,49 293,08 Médias Consumo específico [g/kWh] - - - - - - - - - - - - - - - - - - -	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,9 40 50 50 50 50 50 50 50 50 50 5	Óleo hubificante [°C] 87 88 87 88 83 81 obtidos no ei Óleo hubificante [°C] - 76 75 74 74 74 74 74 74 74 74 78 78	Admissão [°C] 26 26 25 26 25 24 24 24 24 24 24 24 24 24 24 24 24 24	Escape [°C] 608 603 592 596 581 565 552 521 M93 com Tr Escape [°C] - - - 358 354 353 337 316 - M93 com Tr Escape [°C] 2327 315	Bulbo seco [°C] 22 21 21 21 21 21 21 21 20 20PII7 - Op Bulbo seco [°C] - - 20 19 19 19 19 19 5 20 20 20 20 20 20 20 20 20 20	Bulbo úmido [°C] 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,27 92,24 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,36 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,39 92,36 92,36 92,36 92,37 92,36 92,36 92,37 92,26 92,36 92,37 92,26 92,36 92,37 92,26 92,36 92,37 92,26 92,27 92,27 92,26 92,27 92,26 92,27 92,26 92,27 92,26 92,27 92,26 92,27 92,27 92,27 92,26 92,27 92,27 92,27 92,26 92,27 92,27 92,26 92,27 92,27 92,27 92,27 92,27 92,26 92,27 92,2	Opacidade [UB] 5,1 5,2 5,5 5,2 5,4 5,7 5,0 Opacidade [UB] - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,53 0,55 0,57 0,59 0,47 CO [%] - - 0,11 0,10 0,08 0,09 0,08 - - CO [%] CO [%]	CO2 [%] 10,81 10,92 10,97 11,02 10,96 10,85 10,79 10,53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141 155 163 - HC [ppm] HC [ppm] 112 109 112 109 112 109 112 109 112 109 112 109 112 109 112 109 112 109 112 109 1	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] - - - - - - NOx [ppm] 432 463 465 - - NOx [ppm] 179 203
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 2000 [rpm] 2750 2600 2450 2300 2450 2300 1850 1700 1850 1700 1850 1700 2450 2450 2450 2450	Torque [Nm] 38,7 39,8 35,0 34,6 34,6 34,5 Torque [Nm] - - - - - - - - -	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,5 7,5 7,5 1 6,1 90bservada [kW] - - 6,5 5,1 - 5,2 5,2 5,2 4,8 4,4 - - - - 0bservada [kW] - - - - 6,5 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5,2 5	Potência corrigida [kW] 111,7 111,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] 6,4 4,6 - Potência corrigida [kW] 6,4 4,5 6,1	Vazão míssica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão míssica de combustível [g/h] - - 2267,46 2053,96 2040,00 1840,91 - - Vazão míssica de combustível [g/h] 2040,00	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 306,65 287,46 293,08 306,65 287,46 293,08 Wédias Consumo especifico [g/kWh] - - - - - - - - - - - - - - - - - - -	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4 32,4 32,4 31,2 - dos resultados Hiciência [%] 37,5 27,5 3,1	Óleo bíříčante [°C] 87 88 87 88 83 81 obtidos no et Oleo lubrificante [°C] - 76 75 74 73 - obtidos no et Marciante [°C] 74 73 - obtidos no et Marciante [°C] 78 78	Admissão [°C] 26 26 25 26 25 26 25 24 24 24 24 24 24 24 24 24 24 24 24 24	Escape [°C] 608 603 596 581 565 521 ************************************	Bulbo seco [°C] 22 21 21 21 21 21 21 21 20 20 20 20 20 20 19 19 19 19 19 19 20 20 20 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,37 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,30 barométrica [kPa] 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,37 92,36 92,36 92,37	Opacidade [UB] 5,1 5,2 5,5 5,5 5,2 5,2 5,4 5,7 5,7 5,7 5,0 0pacidade [UB] - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - - 0,11 0,10 0,08 - - CO [%] CO [%] CO [%]	CO2 [%] 10.81 10.92 10.87 11.02 10.96 10.85 10.79 10.53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 14 15 19 27 37 37 HC [ppm] - - 141 145 15 163 - HC [ppm] 112 109 110 10 10 10 10 10	NOx [ppm] 870 908 923 927 1011 1001 1013 1017 NOx [ppm] - - - - 392 419 432 463 465 - NOx [ppm] 179 203 314
Rotação [rpm] 2750 2600 2450 2150 2000 1850 1700 2000 1850 2000 2450 2300 2150 2000 1850 2450 2300 2150 2000 1850 1700 2450 2300 2450 2300 2450 2300 2450 2300 2450 2450 2450 2450 2450 2450 2450 24	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7 36,6 34,5 Torque [Nm]	Potência Observada [kW] 11,1,4 11,1,8 9,0 8,1 7,7 7,1 6,1 0bservada [kW] - - 6,5 5,1 5,2 4,8 4,4 - Potência Observada [kW] - - 6,5 5,1 5,2 4,8 4,4 - -	Potência corrigida [kW] 111,7 11,5 9,6 8,7 8,3 8,0 7,6,5 6,5 6,5 6,5 6,5 6,5 6,7 5,3 5,4 6,7 5,3 5,4 7,6,5 6,7 5,3 5,4 7,6,5 6,7 5,3 5,4 7,6,5 6,7 6,7 6,7 6,7 6,7 6,7 6,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8	Vazão mássica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão mássica de combustível [g/h] - 2267,46 2053,96 2082,38 2040,00 1840,91 - - Vazão mássica de combustível [stat] 2040,00 1840,91 - -	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 306,65 287,46 293,08 306,65 293,08 Médias Consumo especifico [g/kWh] - - 351,54 402,74 404,35 429,47 418,39 - Médias Consumo especifico [g/kWh] 333,77 453,37 378,56	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4 32,2 30,4 31,2 - - dos resultados Eficiência [%] 37,5 27,6 33,1 20,7 20,4 20,5 20,4 20,4 20,4 20,4 20,4 20,5 20,4 20,5	Óleo hubríficante [°C] 87 88 87 88 87 88 87 9 obtidos no el Óleo hubrificante [°C] - 76 75 74 73 - obtidos no el Óleo hubrificante [°C] 78 78 78 78 78 78 78 78 78 77	Admissão [°C] 26 26 25 26 25 24 32 4 4 missão do moto [°C] - - 23 23 23 22 22 22 22 22 22 22 22 22 22	Escape [°C] 608 603 596 581 565 521 * M93 com Tr - - - 358 354 353 337 316 - * M93 com Tr Escape [°C] 327 315 344	Bulbo seco [°C] 22 21 21 21 21 21 21 21 21 20 20P117 - Op Bulbo seco [°C] - 20 20 19 19 19 - 20 20 20 20 20 20 20 20 20 20	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,40 92,38 92,39 92,38 92,39 92,38 92,39 92,38 92,39 92,38 92,39 92,36 barométrica [kPa] - - 92,36 92,36 92,36 92,36 92,36 92,36 - - STH600M40 Pressão barométrica [kPa] 92,39 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,37 92,36 92,37 92,36 92,36 92,36 92,36 92,36 92,36 92,37 92,36 92,39 92,36 92,37 92,36 92,37 92,26 92,27 92,26 92,27 92,24 92,24 92,24 92,24 92,24 92,24	Opacidade [UB] 5.1 5.2 5.5 5.2 5.4 5.7 5.0 5.0 0pacidade [UB] - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - 0,11 0,10 0,08 0,09 0,08 - CO [%] 0,04 0,03 0,02 0,02	CO2 [%] 10.81 10.92 10.87 11.02 10.96 10.85 10.79 10.53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - - 141 145 151 152 163 - HC [ppm] 112 109 110 109 100 109 100 109 109 100	NOx [ppm] 870 908 923 923 9101 1011 1001 1013 1017 NOx [ppm] 432 463 - NOx [ppm] 432 465 - NOx [ppm] 179 203 314 380 - - - - - - - - -
Rotação [rpm] 2750 2600 2450 2300 2150 2000 1850 1700 2750 2600 2450 2300 2150 2000 1850 1700 2750 2600 2450 2300 2150 2000 2450 2300 2150 2000 200	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 34,5 Torque [Nm] - - - - Torque [Nm] - - - Torque [Nm] - - - - - - - - - - - - -	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,5 7,5 7,5 7,1 6,1 0 beservada [kW] - - - - - - - - - - - - - - - - - - -	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] - - - 6,7 5,3 5,4 5,0 4,6 - - - Potência corrigida [kW] - - - 6,7 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] - - - - 6,7 8,7 8,7 8,7 8,3 8,0 7,6 6,5 Potência corrigida [kW] - - - - 6,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 7,6 6,5 8,7 7,6 6,5 8,7 7,6 6,5 8,7 7,6 6,5 8,7 8,7 8,7 8,7 8,7 8,7 7,6 6,5 8,7 7,6 6,5 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7	Vazão míssica de combustível [g/h] 2756,51 2751,85 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão míssica de combustível [g/h] - - 2267,46 2082,38 2040,00 1840,91 - Vazão míssica de combustível [g/h] 2023,96 2082,38 2040,00 1840,91 -	Consumo especifico [g/kWh] 249,46 255,59 285,62 308,08 306,65 287,46 293,49 293,49 293,49 293,49 293,49 293,49 293,40 (g/kWh] - - - - - - - - - - - - - - - - - - -	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,9 40 52,4 29,4 28,4 28,2 28,4 28,2 28,4 28,2 28,4 28,2 29,4 28,2 28,2 28,2 28,2 28,2 28,2 29,4 28,2 28,2 28,2 28,2 28,2 28,2 28,2 28,2 29,4 27,4 29,4 28,2 29,4 29,4 29,4 29,4 29,4 29,4 20,4 20,4 20,4 20,4 20,4 27,5 27,6 27,6 29,7 20,7 29,7 29,7 29,7 29,7 29,7 29,7 20,7	Óleo húbificante [°C] 87 88 87 88 87 88 83 81 obtidos no ei Óleo hubificante (°C] - 76 75 74 74 74 74 74 74 74 73 - obtidos no ei Óleo hubificante [°C] 78 78 78 78 77 77	Admissão [°C] 26 26 25 26 25 24 24 24 24 24 24 24 24 24 24 24 24 24	Escape [°C] 608 603 592 596 581 565 552 521 M93 com Tr Escape [°C] - - - 358 354 353 337 316 - M93 com Tr Escape [°C] 2327 327 344 360 272	Bulbo seco [°C] 22 21 21 21 21 21 21 21 20 20 20 20 19 19 19 19 19 19 5 20 20 20 20 20 20 20 20 20 20 20 20 20	Bulbo úmido [°C] 19 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,27 92,24 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,30 92,30 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,24 92,24 92,24 92,24 92,24 92,24 92,24 92,24 92,24 92,24	Opacidade [UB] 5,1 5,2 5,5 5,2 5,4 5,7 5,0 Opacidade [UB] - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,53 0,57 0,57 0,57 0,59 0,47 CO [%] - - 0,11 0,10 0,08 0,09 0,08 0,09 0,08 - CO [%] CO [%]	CO2 [%] 10,81 10,92 10,97 11,02 10,96 10,79 10,53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141 155 151 152 163 - HC [ppm] HC [ppm] 112 109 110 108 109 110 109 109 110 109 100 109 100 1	NOx [ppm] 870 908 923 927 1011 1001 1013 1017 NOx [ppm] - - - - - - - - - - - - -
Rotação [rpm] 2750 2600 2450 2300 1850 1700 1850 1700 2000 2450 2300 2450 2450 2000 1850 1700 1850 1700 1850 1700 2450 2000 2450 2300 2450 2000 2450 2000 2450 2000 2450 2000 2450 2000 2450 2000 2450 2000 2450 245	Torque [Nm] 38,7 39,8 35,0 34,6 34,6 34,5 Torque [Nm] - - 25,4 21,4 23,1 - Torque [Nm] 22,2 16,3 23,2 22,3 23,2 22,3 23,6 22,6 22,3 23,2 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 22,6 22,7 23,7 23,7 24,7 24,7 25,7	Potência Observada [kW] 11,1 10,8 9,0 9,0 8,1 7,7 7,5 7,5 7,5 1,1 6,1 90tência Observada [kW] 6,5 5,1 - - - 6,5 5,1 - - - - 6,5 5,1 - - - - - - - - - - - - - - - - - - -	Potência corrigida [kW] 111,7 111,5 9,6 8,7 8,3 8,0 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,7 5,3 5,4 5,0 4,6 - - Potência corrigida [kW] 9,6 6,7 8,7 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,7 8,7 7,6 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,7 8,3 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 6,7 7,6 7,6	Vazão mássica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão mássica de combustível [g/h] - - 2267,46 2053,96 2040,00 1840,91 - - Vazão mássica de combustível [g/h] 2040,00 1840,91 - 2042,05 204	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 306,65 287,46 293,08 306,65 287,46 293,08 Wédias Consumo especifico [g/kWh] - - - - - - - - - - - - - - - - - - -	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4 32,4 32,4 31,2 - dos resultados Eficiência [%] 37,5 27,5 29,6 33,1 29,7 20,7 2	Óleo bílico labificante [°C] 87 88 87 88 83 81 obtidos no et Óleo lubificante [°C] - 76 75 74 73 - obtidos no et bubificante [°C] 78 78 78 77 75 74 73 - obtidos no et bubificante [°C] 78 78 77 75	Admissão [°C] 26 26 25 26 25 24 24 24 24 24 24 24 24 24 24 24 24 24	Escape [°C] 608 603 596 581 565 521 ************************************	Bulbo seco [°C] 22 21 21 21 21 21 21 21 20 20 20 20 20 20 20 19 19 19 19 19 5 20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,37 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,30 barométrica [kPa] 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,37 92,36 92,36 92,37 92,36 92,39 92,36 92,36 92,37 92,36 92,36 92,37 92,36 92,36 92,37 92,36 92,37 92,36 92,36 92,37 92,36 92,36 92,37 92,26 92,27 92,27 92,26 92,27 92,2	Opacidade [UB] 5,1 5,2 5,5 5,5 5,2 5,2 5,4 5,7 5,0 0pacidade [UB] - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,57 0,59 0,47 CO [%] - - 0,11 0,10 0,08 - CO [%] CO [%] CO [%]	CO2 [%] 10.81 10.92 10.87 11.02 10.96 10.85 10.79 10.53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 14 15 19 27 37 37 HC [ppm] - - HC [ppm] HC [ppm] 112 109 101 108 105 - - - - - - - - -	NOx [ppm] 870 908 923 927 1011 1001 1013 1017 NOx [ppm] - - - 392 419 432 463 465 - NOx [ppm] 179 203 314 380 416 -
Rotação [rpm] 2750 2600 2450 2150 2000 1850 1700 2000 1850 2000 2450 2300 2150 2000 1850 1700 2450 2300 2150 2000 2450 2750 2600 2450 2750 2600 2450 2150 2000	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7 36,6 34,5 Torque [Nm]	Potência Observada [kW] 11,1,4 11,1,4 11,1,4 9,0 8,1 7,7 7,1 6,1 1 0bservada [kW] - - - - - - - - - - - - - - - - - - -	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 7,6 6,5 7,6 7,6 6,5 7,6 7,6 6,5 7,6 7,6 7,6 7,6 6,5 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6	Vazão mássica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2495,48 2495,48 2495,48 2495,48 2495,48 2495,49 1773,13 Vazão mássica de combustível [g/h] - - 2267,46 2053,96 2082,38 2040,00 1840,91 - - Vazão mássica de combustível [g/h] 2040,00 1840,91 - -	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 306,65 287,46 293,08 308,08 Médias Consumo especifico [g/kWh] - - 351,54 402,74 404,35 429,47 418,39 - Médias Consumo especifico [g/kWh] 333,77 453,37 378,56 421,827 378,56	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4 32,2 30,4 31,2 - dos resultados Eficiência [%] 37,5 27,6 33,1 29,7 30,7 30,7 30,7 30,9	Óleo hbifiCante [°C] 87 88 87 88 87 88 81 obtidos no el Óleo lubrificante [°C] - 76 75 74 73 - obtidos no el blubrificante [°C] 76 75 74 73 - obtidos no el Óleo lubrificante [°C] 78 78 75 75 75	Admissão [°C] 26 26 25 26 25 24 32 4 4 missão do moto (°C] - - 23 23 23 22 22 22 22 22 22 22 22 22 22	Escape [°C] 608 603 596 581 565 521 * M93 com Tr - - - - - - - - - - - - -	Bulbo seco [°C] 22 21 21 21 21 21 21 21 20 200P117 - Op 20 200 19 19 19 - 200P117 - Op 20 200 19 19 19 5 200P117 - Op 20 200 19 19 19 19 19 19 19 19 19	Bulbo úmido [°C] 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,40 92,38 92,39 92,38 92,39 92,38 92,39 92,38 92,39 92,36 barométrica [kPa] - - 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,24 92,24 92,24 92,24 92,24 92,24 92,23 92,20	Opacidade [UB] 5.1 5.2 5.5 5.2 5.4 5.7 5.0 5.0 0pacidade [UB] - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,59 0,47 CO [%] - - 0,11 0,10 0,08 0,09 0,08 - CO [%] 0,04 0,03 0,02 0,02 0,02	CO2 [%] 10.81 10.92 10.87 11.02 10.96 10.85 10.79 10.53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141 145 151 152 163 - HC [ppm] 112 109 110 108 109 110 109 110 109 110 109 110 109 110 109 110 109 100	NOx [ppm] 870 908 923 979 1011 1001 1013 1017 NOx [ppm] - - - 392 419 432 463 - NOx [ppm] 179 203 314 380 416 487 - - - - - - - - -
Rotação [rpm] 2750 2600 2450 2150 2000 1850 1700 2150 2600 2450 2300 2150 2000 1850 1700 2750 2600 2450 2300 2150 2000 1850	Torque [Nm] 38,7 39,8 35,0 34,0 35,7 36,6 35,7 36,6 34,5 Torque [Nm]	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,5 7,5 7,1 6,1 0 bservada [kW] - - - - - - - - - - - - - - - - - - -	Potência corrigida [kW] 11,7 11,5 9,6 8,7 8,3 8,0 7,6 6,5 7,6 6,5 Potência corrigida [kW] - - - 6,7 5,4 5,4 5,0 4,6 - - - Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,5 Potência corrigida [kW] 9,6 6,7 Potência corrigida [kW] 9,6 6,7 Potência corrigida [kW] 9,6 6,7 S,4 S,4 S,4 S,4 S,4 S,4 S,4 S	Vazão míssica de combustível [g/h] 2756,51 2556,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão míssica de combustível [g/h] - - 2267,46 2082,98 2040,00 1840,91 - - Vazão míssica de combustível [g/h] 2025,36 2082,38 2040,00 1840,91 - -	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,49 293,40 (g/kWh] 302,75 402,47 404,75 378,56 421,82 404,75 378,56	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,8 28,9 40 37,1 32,4 30,4 31,2 - dos resultados Eficiência [%] 27,6 33,1 29,7 30,7 30,9 33,1 29,7 30,7 30,9 33,1 29,7 30,7 30,9 33,1 29,7 30,7 30,9 33,1 29,7 30,7 30,9 33,1 29,7 30,7 30,9 33,1 29,7 30,7 30,9 33,1 29,7 30,7 30,7 30,9 33,1 29,7 30,7	Óleo húbificante [°C] 87 88 87 88 87 88 83 81 obtidos no ei Óleo hubificante [°C] - 76 75 78 78 78 75 74	Admissão [°C] 26 26 25 26 25 24 24 24 24 24 24 24 24 25 24 25 27 23 22 22 22 23 22 22 22 22 22 22 22 22	Escape [°C] 608 603 592 596 581 565 552 521 M93 com Tr Escape [°C] - - - 358 354 353 337 316 - M93 com Tr Escape [°C] 2327 327 315 344 360 370 382 384	Bulbo seco [°C] 22 21 21 21 21 21 21 20 20 20 20 9 19 19 19 19 19 19 5 20 20 20 20 20 20 20 20 20 20 20 20 20	Bulbo úmido [°C] 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,37 92,37 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 7 7 7 7 92,36 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,37 92,36 92,27 92,24 92,24 92,24 92,24 92,24 92,21	Opacidade [UB] 5,1 5,2 5,5 5,2 5,4 5,7 5,0 Opacidade [UB] - - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,53 0,57 0,57 0,57 0,59 0,47 - - 0,11 0,10 0,08 0,09 0,08 0,09 0,08 - - CO [%] CO [%] CO [%] CO [%] 0,04 0,05 0,	CO2 [%] 10,81 10,92 10,96 10,85 10,79 10,53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 15 19 27 37 HC [ppm] - - 141 145 151 152 163 - HC [ppm] 112 109 100	NOx [ppm] 870 908 923 927 1011 1001 1013 1017 NOx [ppm] - - - 392 419 432 463 465 - NOx [ppm] 179 203 314 380 416 487 567
Rotação [rpm] 2750 2600 2450 2300 1850 1700 2000 1850 1700 2450 2450 2450 2450 2450 2450 2450 24	Torque [Nm] 38,7 39,8 35,0 34,0 34,6 35,7 36,6 34,5 Torque [Nm] - - 25,4 21,4 23,1 - Torque [Nm] 22,2 16,3 23,2 22,3 23,6 26,6 23,2 22,3 23,6 26,6 28,4 27,4 28,4 27,4 28,4 27,4 28,4 27,4 28,4 29,4 29,4 29,4 29,4 29,4 20,5 28,4 27,4 27,4 28,4 27,4 28,4 27,4 28,4 27,4 28,4 27,4 28,4 27,4 28,4 28,4 27,4 28,4 28,4 28,4 27,4 28,4	Potência Observada [kW] 11,1 10,8 9,0 8,1 7,7 7,5 7,5 7,5 7,5 1 6,1 6,1 0bservada [kW] 6,5 5,1 - - - 6,5 5,1 - - - 6,5 5,2 2 4,8 4,4 4,4 - - - - - - - - - - - - - - - -	Potência corrigida [kW] 111,7 111,5 9,6 8,7 8,3 8,0 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,7 5,3 5,4 5,0 4,6 - - Potência corrigida [kW] - - - 6,7 5,3 5,4 5,0 4,6 - - Potência corrigida [kW] 11,7 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,7 8,3 7,6 6,5 7,6 6,5 7,7 8,3 7,6 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,7 6,5 7,6 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,7 6,5 7,6 6,5 7,7 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 6,5 7,6 7,6 7,6 6,5 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,6 7,7 7,6 7,6	Vazão mássica de combustível [g/h] 2756,51 2751,85 2356,31 2495,48 2361,17 2141,61 2069,08 1773,13 Vazão mássica de combustível [g/h] - - - 2267,46 2053,96 2040,00 1840,91 - - Vazão mássica de combustível [g/h] 2040,00 1840,91 - -	Consumo especifico [g/kWh] 249,46 255,99 285,62 308,08 306,65 287,46 293,08 306,65 287,46 293,08 306,65 287,46 293,08 Wédias Consumo especifico [g/kWh] 3351,54 402,74 333,77 878,56 421,82 407,94 404,75 378,856 387,93	Eficiência [%] 33,8 33,0 29,6 27,4 27,5 29,4 28,8 dos resultados Eficiência [%] - - 37,1 32,4 32,4 32,4 31,2 - dos resultados Eficiência [%] 37,5 27,6 33,1 29,7 30,1 32,3 32,3 32,3 32,3 33,1 32,3 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 33,1 32,3 32,3 32,3 33,1 32,3 32,3 32,3 32,3 32,3 32,3 33,1 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 33,1 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 33,1 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3 33,1 33,1 33,1 33,1 32,3 33,1 3	Óleo bílicon labificante [°C] 87 88 87 88 83 81 obtidos no et Óleo lubificante [°C] - 76 75 74 73 - obtidos no et bubificante [°C] 78 78 78 77 75 75 74 73	Admissão [°C] 26 26 25 26 25 24 24 24 24 24 24 24 24 24 24 24 24 24	Escape [°C] 608 603 596 581 565 552 521 * M93 com TC Escape [°C] - - - 358 354 353 337 316 - * M93 com TC Scape [°C] 327 315 327 316 - 327 316 327 337 344 360 370 384 375	Bulbo seco [°C] 22 21 21 21 21 21 21 20 20 20 20 20 20 20 19 19 19 19 19 19 20 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	Bulbo úmido [°C] 19 19 19 19 18 18 18 18 18 18 18 18 18 18	Pressão barométrica [kPa] 92,37 92,37 92,37 92,37 92,38 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,39 92,30 barométrica [kPa] 92,36 92,36 92,36 92,36 92,36 92,36 92,36 92,37 92,36 92,36 92,37 92,36 92,36 92,37 92,36 92,37 92,26 92,24 92,24 92,24 92,24 92,24 92,24 92,23 92,20	Opacidade [UB] 5,1 5,2 5,5 5,5 5,2 5,2 5,4 5,7 5,0 0pacidade [UB] - - 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	CO [%] 0,38 0,44 0,43 0,55 0,57 0,57 0,57 0,57 0,47 CO [%] - - 0,11 0,10 0,08 - - CO [%] CO [%] CO [%] 0,09 0,008 - - CO [%] 0,04 0,05 0,09 0,008 - - - - - - - - - - - - -	CO2 [%] 10.81 10.92 10.87 11.02 10.96 10.85 10.79 10.53 CO2 [%] - - - - - - - - - - - - -	HC [ppm] 14 15 14 14 15 19 27 37 37 HC [ppm] - - HC [ppm] HC [ppm] 112 109 112 109 100 109 100 109 108 109 108 109 108 10 10	NOx [ppm] 870 908 923 927 1011 1001 1013 1017 NOx [ppm] - - - 392 419 432 463 465 - NOx [ppm] 179 203 314 416 487 567 616

[Média	is dos resultad	los obtidos no	ensaio do mo	tor M93 com	TC21,5PI10	- Operando co	om OD100					
Rotação [rpm]	Torque [Nm]	Potência Observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível [g/h]	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2[%]	HC [ppm]	NOx [ppm]
2750	40,9	11,7	12,6	2776,60	238,33	35,4	92	32	597	28	19	92,07	6,1	0,45	11,13	14	482
2600	41,5	11,2	12,4	2891,71	258,19	32,7	91	32	590	29	19	92,07	5,9	0,45	11,15	9	502
2450	37,7	9,7	11,0	3067,89	317,92	26,5	92	33	588	30	19	92,08	6,0	0,52	11,31	8	551
2300	35,9	8,7	9,5	2411,94	278,84	30,3	91	34	583	29	19	92,07	6,2	0,65	11,33	7	619
2150	37,0	8,3	9,1	2277,37	274,38	30,8	91	34	568	28	19	92,09	6,1	0,69	11,48	7	658
2000	38,1	8,0	9,1	2405,17	300,65	28,1	92	34	555	28	19	92,09	6,5	0,83	11,57	6	716
1850	40,1	7,7	8,6	2222,71	290,55	29,0	92	33	543	28	19	92,07	6,8	0,93	11,57	7	766
1700	38,8	6,9	8,0	2215,71	321,12	26,3	91	33	530	28	19	92,06	7,2	1,09	11,65	9	814
					Médias d	los resultados	obtidos no ens	saio do motor	M93 com TC	21,5PI10 - O	perando com	ETH60OM40					
Rotação [rpm]	Torque [Nm]	Potência Observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível [g/h]	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm]
2750	26,2	7,5	8,0	2575,47	343,40	36,5	83	31	392	29	18	91,94	0,1	0,05	7,05	119	197
2600	25,4	6,9	7,6	2896,55	419,79	29,8	82	31	374	29	18	91,93	0,1	0,05	6,80	120	208
2450	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2300	24,2	5,8	6,4	2481,48	427,84	29,3	80	31	362	29	19	91,93	0,1	0,04	7,07	103	260
2150	26,4	6,0	6,7	2450,83	408,47	30,6	80	31	373	28	19	91,96	0,1	0,04	7,53	103	307
2000	27,2	5,7	6,5	2551,04	447,55	28,0	80	30	366	28	19	91,96	0,2	0,04	7,89	108	344
1850	29,6	5,7	6,4	2274,37	402,54	31,1	80	30	364	28	19	91,95	0,2	0,04	7,78	138	356
1700	28,7	5,1	5,7	2033,51	402,68	31,1	80	30	357	27	18	91,97	0,4	0,05	8,23	181	384
					Média	is dos resultad	los obtidos no	ensaio do mo	tor M93 com	TC21,5PI17	 Operando co 	om OD100					
Rotação [rpm]	Torque [Nm]	Potência Observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível [g/h]	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm]
2750	44,4	12,7	13,7	3046,44	239,88	35,2	89	25	567	18	18	92,58	5,6	0,32	10,95	33	1021
2600	45,1	12,3	13,0	2653,64	216,62	39,0	88	25	554	19	18	92,58	5,4	0,31	10,86	22	1065

Rotação [rpm]	Torque [Nm]	Potência Observada [kW]	Potência corrigida [kW]	vazao mássica de combustível [g/h]	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2[%]	HC [ppm]	NOx [ppm]
2750	44,4	12,7	13,7	3046,44	239,88	35,2	89	25	567	18	18	92,58	5,6	0,32	10,95	33	1021
2600	45,1	12,3	13,0	2653,64	216,62	39,0	88	25	554	19	18	92,58	5,4	0,31	10,86	22	1065
2450	39,2	10,1	10,8	2704,23	269,08	31,4	88	25	553	19	18	92,58	5,5	0,37	11,00	20	1100
2300	38,2	9,2	10,0	2762,94	301,96	28,0	87	26	558	19	18	92,57	5,9	0,49	11,31	17	1141
2150	38,7	8,7	9,3	2414,94	279,18	30,2	85	25	549	19	17	92,56	5,9	0,56	11,27	17	1160
2000	39,5	8,2	9,0	2429,73	296,31	28,5	86	24	533	19	17	92,57	6,0	0,61	11,33	19	1151
1850	40,3	7,8	8,6	2401,03	309,81	27,2	85	24	522	19	17	92,56	6,2	0,71	11,32	26	1160
1700	39,5	7,0	7,6	2022,94	288,99	29,2	83	23	510	19	17	92,56	6,4	0,84	11,27	28	1152
					Médias d	os resultados	obtidos no ens	saio do motor	M93 com TC	21,5PI17 - O	perando com	ETH70OM30)				
Rotação [rpm]	Torque [Nm]	Potência Observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível [g/h]	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm]
2750	13,4	3,8	3,8	1737,56	457,25	28,5	75	21	241	18	17	92,45	0,0	0,14	3,98	115	50
2600	9,1	2,4	2,4	1440,00	600,00	21,7	75	21	223	18	17	92,41	0,0	0,13	3,75	132	59
2450	9,8	2,5	2,4	1441,09	588,20	22,2	75	21	212	18	17	92,40	0,0	0,12	3,84	137	73
2300	11,2	2,7	2,7	1625,21	613,29	21,3	74	21	217	17	17	92,40	0,0	0,10	3,95	129	116
2150	15,2	3,4	3,4	1624,55	484,94	26,9	73	21	232	17	17	92,39	0,0	0,07	4,63	117	221
2000	17,1	3,5	3,5	1442,75	412,21	31,6	72	21	239	17	17	92,39	0,0	0,06	4,90	112	290
1850	21,4	4,1	4,2	1508,82	368,01	35,4	71	21	239	17	17	92,39	0,0	0,05	5,20	111	361
1700	20,2	3,6	3,7	1665,20	469,07	27,8	71	21	245	17	16	92,38	0,0	0,04	5,44	108	457
					Médias d	os resultados	obtidos no ens	saio do motor	M93 com TC	21,5PI17 - O	perando com	ETH60OM40)				
Rotação [rpm]	Torque [Nm]	Potência Observada [kW]	Potência corrigida [kW]	Vazão mássica de combustível [g/h]	Consumo específico [g/kWh]	Eficiência [%]	Óleo lubrificante [°C]	Admissão [°C]	Escape [°C]	Bulbo seco [°C]	Bulbo úmido [°C]	Pressão barométrica [kPa]	Opacidade [UB]	CO [%]	CO2 [%]	HC [ppm]	NOx [ppm]
2750	16,5	4,7	4,7	1987,31	427,38	29,3	76	21	267	18	16	92,53	0,0	0,11	4,53	103	99
2600	13,3	3,6	3,6	1736,90	489,27	25,6	76	22	237	18	17	92,53	0,0	0,13	4,05	108	63
2450	10,8	2,7	2,6	1500,00	566,04	22,1	75	21	220	18	17	92,54	0,0	0,12	3,85	91	74
2300	13,6	3,3	3,3	1585,73	487,92	25,7	72	21	231	18	17	92,55	0,2	0,12	4,35	99	144
2150	19,5	4,4	4,5	1878,79	431,91	29,0	71	21	276	18	16	92,55	0,0	0,06	5,44	98	355
2000	23,4	5,0	5,2	1941,07	392,13	31,9	71	21	304	18	16	92,56	0,5	0,04	6,41	95	505
1850	26,2	5,1	5,3	1848,27	365,99	34,2	71	21	309	18	16	92,54	0,1	0,05	6,74	98	602
1700	29,4	5,2	5,6	2104,62	408,66	30,6	71	21	338	18	16	92,52	0,4	0,05	7,61	101	751

APÊNDICE C – DESVIO PADRÃO DOS RESULTADOS OBTIDOS

						Rotacã	io [rpm]			
Configuração de ajuste	Combustível	Característica avaliada	1700	1850	2000	2150	2300	2450	2600	2750
		Torque observado [Nm]	0,071	0,212	0,000	0,141	0,212	0,071	0,071	0,141
		Potência observada [kW]	0,000	0,071	0,000	0,000	0,071	0,000	0,000	0,071
		Eficiência de conversão dos combustíveis [%]	0,000	0,280	0,000	0,000	0,219	0,000	0,000	0,194
		Temperatura dos gases de escape [°C]	0,707	0,000	0,707	0,000	0,000	0,707	0,707	0,000
	OD100	Índice de fumaça dos gases de escape [UB]	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,071
		Monóxido de carbono [%]	0,042	0,014	0,014	0,014	0,028	0,014	0,028	0,021
		Dióxido de carcobo [%]	0,007	0,007	0,021	0,007	0,057	0,071	0,028	0,021
		Hidrocarbonetos [ppm]	0,707	1,414	0,000	0,707	0,707	2,121	0,707	1,414
		Óxidos de nitrogênio [ppm]	2,828	2,828	2,121	1,414	0,707	5,657	0,000	1,414
Γ		Torque observado [Nm]	0,141	0,000	0,141	0,071	0,071	0,141	0,000	0,212
		Potência observada [kW]	0,000	0,000	0,071	0,000	0,000	0,000	0,071	0,071
		Eficiência de conversão dos combustíveis [%]	0,000	0,000	0,367	0,000	0,000	0,000	0,301	0,309
		Temperatura dos gases de escape [°C]	2,828	0,707	1,414	0,707	2,828	0,707	2,828	0,707
TC20-PI10	ETH60OM40	Índice de fumaça dos gases de escape [UB]	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
		Monóxido de carbono [%]	0,000	0,007	0,007	0,000	0,000	0,000	0,000	0,000
		Dióxido de carcobo [%]	0,078	0,014	0,035	0,007	0,035	0,035	0,064	0,057
		Hidrocarbonetos [ppm]	1,414	0,000	1,414	2,121	2,121	1,414	0,707	3,536
		Óxidos de nitrogênio [ppm]	4,243	0,707	0,707	2,121	2,121	1,414	4,950	2,121
		Torque observado [Nm]	0,000	0,212	0,071	0,141	0,071	0,071	0,000	0,141
		Potência observada [kW]	0,000	0,000	0,000	0,000	0,071	0,000	0,000	0,000
		Eficiência de conversão dos combustíveis [%]	0,000	0,000	0,000	0,000	0,310	0,000	0,000	0,000
		Temperatura dos gases de escape [°C]	0,707	0,707	0,000	0,707	0,707	0,000	0,000	0,000
	ETH70OM30	Índice de fumaça dos gases de escape [UB]	0,000	0,000	0,000	0,071	0,000	0,000	0,000	0,000
		Monóxido de carbono [%]	0,007	0,000	0,000	0,000	0,000	0,000	0,007	0,007
		Dióxido de carcobo [%]	0,057	0,014	0,035	0,007	0,035	0,028	0,021	0,035
		Hidrocarbonetos [ppm]	0,707	0,707	1,414	1,414	2,121	1,414	0,000	2,121
		Oxidos de nitrogênio [ppm]	0,707	0,707	2,828	2,121	0,707	2,121	1,414	2,121
		Torque observado [Nm]	0,212	0,000	0,071	0,212	0,071	0,071	0,212	0,071
		Potência observada [kW]	0,071	0,071	0,071	0,000	0,000	0,071	0,071	0,071
		Eficiência de conversão dos combustíveis [%]	0,337	0,288	0,279	0,000	0,000	0,233	0,217	0,217
		Temperatura dos gases de escape [°C]	0,707	0,707	0,000	0,000	0,000	2,121	0,707	0,707
	OD100	Indice de fumaça dos gases de escape [UB]	0,000	0,071	0,071	0,000	0,141	0,141	0,071	0,141
		Monóxido de carbono [%]	0,021	0,007	0,007	0,007	0,007	0,021	0,007	0,007
		Dióxido de carcobo [%]	0,035	0,127	0,021	0,042	0,007	0,014	0,007	0,049
		Hidrocarbonetos [ppm]	1,414	1,414	0,707	0,000	0,707	0,707	0,707	1,414
_		Oxidos de nitrogênio [ppm]	5,657	7,071	3,536	1,414	12,728	4,243	0,707	10,607
		Torque observado [Nm]	0,071	0,283	0,424	0,212	0,566	0,283	0,424	0,141
		Potencia observada [kW]	0,000	0,000	0,071	0,141	0,071	0,071	0,141	0,000
		Eficiência de conversão dos combustiveis [%]	0,000	0,000	0,409	0,819	0,392	0,400	0,888	0,000
TC20 D117	ETU/00M40	Temperatura dos gases de escape [°C]	0,000	0,/0/	4,243	1,414	6,364	0,000	0,707	6,364
IC20-P117	ETH000M40	Indice de fumaça dos gases de escape [UB]	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
		Monoxido de carbono [%]	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
		Dioxido de carcobo [%]	0,042	0,035	0,064	0,141	0,226	0,035	0,106	0,035
		Hidrocarbonetos [ppm]	0,707	0,707	1,414	0,707	0,707	0,707	0,707	1,414
		Torque chearre de [Nim]	4,930	3,330	1,118	9,192	0.779	7,071	4,243	41,012
		Lorque observado [INM]	-	0,141	0,283	0,141	0,778	0,141	-	-
		Folencia de conversão dos combustívois [9/]	-	0,000	0,071	0,071	0,141	0,071	-	-
		Temperatura dos gases de escape [°C]	-	0,000	1.414	0,000	0,090	0,407	-	_
	ETH700M30	Índice de fumaça dos gases de escape [UP]	_	0,000	0,000	0,000	0,000	0,000		_
	L111/00/0150	Monóxido de carbono [%]	-	0,000	0,000	0,000	0,000	0,000	-	_
		Dióxido de carcobo [%]		0.021	0.007	0.007	0.021	0.007		
				0,021	0,007	0,007	0,021	0,007	-	-
		Hidrocarbonetos [ppm]	-	2.828	1.414	1.414	1.414	2.121	-	-

			Rotação [rmm]							
Configuração de ajuste	Combustível	Característica avaliada	1700	1850	2000	2150	2300	2450	2600	2750
TC21.5-PI10		Torque observado [Nm]	0,141	0,071	0,071	0,141	0,141	0,141	0,071	0,071
		Potência observada [kW]	0,000	0,071	0,000	0,000	0,071	0,071	0,000	0,071
	OD100	Eficiência de conversão dos combustíveis [%]	0,000	0,269	0,000	0,000	0,247	0,195	0,000	0,215
		Temperatura dos gases de escape [°C]	0,000	0,000	0,707	1,414	0,707	0,707	0,000	0,000
		Índice de fumaça dos gases de escape [UB]	0,071	0,000	0,141	0,000	0,071	0,141	0,141	0,071
		Monóxido de carbono [%]	0,014	0,028	0,014	0,014	0,007	0,000	0,007	0,007
		Dióxido de carcobo [%]	0,049	0,021	0,028	0,014	0,057	0,021	0,071	0,071
		Hidrocarbonetos [ppm]	0,707	0,000	0,707	0,707	0,707	0,707	0,000	1,414
		Óxidos de nitrogênio [ppm]	4,950	4,243	2,121	2,121	2,121	1,414	4,950	4,243
	ETH60OM40	Torque observado [Nm]	0,566	0,566	0,495	0,141	0,141	-	2,687	0,636
		Potência observada [kW]	0,071	0,071	0,141	0,000	0,000	-	0,566	0,141
		Eficiência de conversão dos combustíveis [%]	0,435	0,389	0,694	0,000	0,000	-	2,445	0,687
		Temperatura dos gases de escape [°C]	6,364	2,828	4,950	0,707	1,414	-	8,485	1,414
		Índice de fumaça dos gases de escape [UB]	0,000	0,000	0,000	0,000	0,000	-	0,000	0,000
		Monóxido de carbono [%]	0,007	0,000	0,000	0,000	0,000	-	0,000	0,000
		Dióxido de carcobo [%]	0,071	0,064	0,156	0,262	0,099	-	0,453	0,057
		Hidrocarbonetos [ppm]	3,536	7,778	2,828	1,414	0,707	-	0,000	2,121
		Óxidos de nitrogênio [ppm]	2,121	3,536	9,192	0,707	4,243	-	15,556	7,071
	ETH70OM30	Torque observado [Nm]	-	-	-	-	-	-	-	-
		Potência observada [kW]	-	-	-	-	-	-	-	-
		Eficiência de conversão dos combustíveis [%]	-	-	-	-	-	-	-	-
		Temperatura dos gases de escape [°C]	-	-	-	-	-	-	-	-
		Indice de fumaça dos gases de escape [UB]	-	-	-	-	-	-	-	-
		Monóxido de carbono [%]	-	-	-	-	-	-	-	-
		Dióxido de carcobo [%]	-	-	-	-	-	-	-	-
		Hidrocarbonetos [ppm]	-	-	-	-	-	-	-	-
		Oxidos de nitrogênio [ppm]	-	-	-	-	-	-	-	-
TC21.5-PI17	OD100	Torque observado [Nm]	0,141	0,212	0,071	0,071	0,212	0,283	0,283	0,495
		Potência observada [kW]	0,000	0,071	0,000	0,071	0,071	0,071	0,071	0,141
		Eficiência de conversão dos combustíveis [%]	0,000	0,249	0,000	0,247	0,216	0,221	0,225	0,392
		Temperatura dos gases de escape [°C]	0,/0/	0,000	0,707	0,707	0,707	0,707	3,536	0,000
		Indice de fumaça dos gases de escape [UB]	0,000	0,071	0,000	0,071	0,212	0,141	0,071	0,212
			0,014	0,007	0,007	0,014	0,014	0,055	0,014	0,014
			0,014	0,037	0,004	0,028	0,007	1,414	0,055	0,071
		Óvides de nitrogânie [nnm]	0,707	0,707	0,000	4,050	0,707	1,414	1,414	3,330
		Torque observado [Nm]	9,899	0,403	2,020	4,930	0.405	0,707	2,121	0.212
	ETH60OM40	Potância observada [kW]	0,212	0,424	0,285	0,000	0,495	0,495	0.212	0,212
		Eficiência de conversão dos combustíveis [%]	0,071	0,071	0,071	0,071	1,675	0,590	1 529	0,071
		Temperatura dos gases de escape [°C]	0,000	2 828	3 536	0,707	2 828	0,000	1,527	0,707
		Índice de fumaça dos gases de escape [UB]	0.071	0.071	0.071	0,000	0,000	0,000	0,000	0,000
		Monóxido de carbono [%]	0.000	0.007	0.000	0.007	0.007	0.000	0.007	0.007
		Dióxido de carcobo [%]	0.014	0.021	0.042	0.120	0.106	0.071	0.071	0.014
		Hidrocarbonetos [ppm]	0,707	0.707	1.414	0.707	1.414	3,536	0,707	0,707
		Óxidos de nitrogênio [ppm]	1.414	6.364	0.707	4,950	13.435	2,121	4,243	0.000
	ETH70OM30	Torque observado [Nm]	0,141	1,131	0,424	0,566	0,707	1,131	0,354	0,212
		Potência observada [kW]	0,071	0,283	0,141	0,212	0,212	0,354	0,141	0,000
		Eficiência de conversão dos combustíveis [%]	0,554	2,444	1,278	1,702	1,702	3,199	1,280	0,000
		Temperatura dos gases de escape [°C]	2,121	0,707	0,707	1,414	3,536	0,000	2,828	0,000
		Índice de fumaça dos gases de escape [UB]	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
		Monóxido de carbono [%]	0,000	0,000	0,007	0,007	0,007	0,007	0,000	0,007
		Dióxido de carcobo [%]	0,021	0,141	0,163	0,000	0,014	0,099	0,064	0,042
		Hidrocarbonetos [ppm]	1,414	0,707	0,707	0,707	0,707	0,707	2,121	6,364
		Óxidos de nitrogênio [ppm]	5,657	5,657	12,728	6,364	8,485	4,950	0,707	1,414