Controlando a geração de faces através de Generative Adversarial Networks
Date
2022-07-12Author
Silva, Felipe Fischer da
Orientador
Webber, Carine Geltrudes
Metadata
Show full item recordAbstract
Generative Advesarial Networks (GANs) são um avanço relativamente recente dentro da área do aprendizado de máquina. Este framework tem sido utilizado em vários trabalhos de sucesso na visão computacional. Estudos sobre síntese de faces costumam usar GANs para produzir novas imagens de rostos humanos. As possibilidades vão desde a alteração das características de um rosto pequeno até a criação de um rosto completamente novo. Este estudo em particular tem como objetivo fazer uma pesquisa exploratória, introduzindo o tema e investigando possíveis aplicações para a síntese de faces. Para começar, foi feita uma revisão sistemática. Em seguida, foi proposto o uso de uma GAN para gerar faces aleatórias utilizando atributos controláveis ??do dataset CelebA. Para avaliar tal cenário, foram utilizadas as métricas FID e IS. Um método baseado em princípios de deep learning foi seguido ao longo desta pesquisa. Métodos relevantes como Noisy Scale-Space e suavização de rótulo unilateral foram aplicados para garantir a convergência GAN e melhores resultados. Para concluir, o melhor modelo teve um desempenho semelhante aos modelos descritos na literatura, atingindo um valor de FID de 23,08 (±1,35). [resumo fornecido pelo autor]