• português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • Entrar
Ver item 
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Ciências Exatas e da Terra
  • Ciência da Computação - Bacharelado
  • Ver item
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Ciências Exatas e da Terra
  • Ciência da Computação - Bacharelado
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrando a dança e a música em uma arquitetura de deep learning

Visualizar/Abrir
TCC Maria Carolina Webber do Prado Lima.pdf (1.966Mb)
Data
2022-07-12
Autor
Lima, Maria Carolina Webber do Prado
Orientador
Webber, Carine Geltrudes
Metadata
Mostrar registro completo
Resumo
A dança e a música são expressões artísticas correlacionadas. O uso de métodos de Machine Learning (ML) e Deep Learning (DL) em aplicações nestas áreas está em crescimento graças a criatividade dos artistas e designers. As áreas de ML e DL compreendem um conjunto de métodos computacionais que possibilitam a construção de modelos por meio do aprendizado de máquina. Este trabalho de pesquisa teve como objetivo propor, construir e avaliar modelos obtidos a partir de processos de aprendizado de máquina para uma tarefa de classificação a partir de vídeos de danças e geração de trechos de música. Para a elaboração deste projeto, iniciou-se com um processo de revisão sistemática [1], o qual considerou para análise um corpus composto por 15 artigos. Por meio do aprofundamento dos trabalhos buscou-se identificar quais técnicas de ML e DL foram aplicadas, quais os datasets utilizados, bem como reconhecer as métricas de avaliação empregadas. A partir dos dados obtidos concebeu-se uma arquitetura composta por redes convolucionais e recorrentes, que de forma complementar promoveram o processamento desejado. Como dados para validação e teste do modelo construiu-se três datasets de vídeos, representando danças nos estilos samba e forró. Durante a fase de testes projetou-se cinco modelos de DL, variando-se também o dataset utilizado. A saída final do sistema compreendeu a geração de trechos de música em formato Musical Instrument Digital Interface (MIDI). Como resultados, após extenso protocolo de testes, obteve-se valores de acurácia elevados em uma das configurações, registrando-se a classificação correta dos vídeos e produzindo trechos de música similares aos estilos esperados. Os resultados finais, em termos de métricas usadas em sistemas de DL, são detalhados no artigo. [resumo fornecido pelo autor]
URI
https://repositorio.ucs.br/11338/11984
Collections
  • Ciência da Computação - Bacharelado [183]

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

Minha conta

EntrarCadastro

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV