Mostrar el registro sencillo del ítem

dc.contributor.advisorWebber, Carine Geltrudes
dc.contributor.authorSilva, Lucas Massignani Coelho da
dc.contributor.otherBoff, Elisa
dc.contributor.otherRibeiro, Helena Graziottin
dc.date.accessioned2023-05-18T17:38:12Z
dc.date.available2023-05-18T17:38:12Z
dc.date.issued2022-12-13
dc.date.submitted2022-12-06
dc.identifier.urihttps://repositorio.ucs.br/11338/11989
dc.descriptionAs doenças cardiovasculares (DCV) são as principais causas de morte em todo o mundo. Neste contexto, ferramentas de triagem automáticas podem auxiliar a identificar essas doenças. Como exemplo, o eletrocardiograma (ECG) é um dos principais métodos de triagem, por ser eficiente e não invasivo. Por conta dessas características, ele é amplamente utilizado para identificar DCVs. O infarto do miocárdio (IM) ou ataque cardíaco é uma DCV que ocorre devido ao bloqueio parcial ou completo do fluxo sanguíneo para os músculos cardíacos. Ele pode levar a danos irreversíveis ao coração, ou até mesmo a morte, se não for identificado precocemente. Neste sentido, existe um conceito chamado golden hour, ou seja, a hora de ouro, o que significa que o restabelecimento da circulação sanguínea deve ser feito o quanto antes. Pode-se evitar, assim, a morte do músculo cardíaco, reduzindo a taxa de mortalidade. Nesse contexto,o objetivo desse trabalho consiste em, a partir dos sinais vindos de um ECG, empregar métodos de Aprendizado de Máquina para fins de predição de infarto e implementar uma interface de programação de aplicações (API), para disponibilizar o acesso ao modelo de aprendizado pelos dispositivos capazes de enviar sinais. Para iniciar, esse projeto partiu de um processo de revisão sistemática da literatura, a fim de mapear o estado da arte na área. Foram selecionados trabalhos relacionados ao estudo, aplicando-se filtros e refinamentos sucessivos. A partir da análise desses trabalhos, foi identificado o melhor método de classificação para dar continuidade ao estudo. Além disso, foi identificado um padrão entre os trabalhos analisados, sendo esse a utilização do dataset PTB, ou PTB-XL, esteve presente na maioria dos projetos. Selecionou-se para este projeto o dataset PTB-XL por conter um número maior de instâncias. Por fim, foram utilizados os algorítimos Random Forest e Árvore de Decisão para fazer a implementação dos modelos, além da criação de uma Interface de Programação de Aplicação (API) e sua disponibilização via Heroku. [resumo fornecido pelo autor]pt_BR
dc.language.isoptpt_BR
dc.subjectAprendizado do computadorpt_BR
dc.subjectEletrocardiografiapt_BR
dc.subjectInfarto do miocárdiopt_BR
dc.titleInterface preditiva aplicada à área da saúdept_BR
dc.typeMonografiapt_BR
mtd2-br.advisor.instituationUniversidade de Caxias do Sulpt_BR
mtd2-br.program.nameBacharelado em Ciência da Computaçãopt_BR
mtd2-br.campusCampus Universitário de Caxias do Sulpt_BR
local.data.embargo2022-12-12


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem