• português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • Entrar
Ver item 
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Engenharias
  • Engenharia de Computação - Bacharelado
  • Ver item
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Engenharias
  • Engenharia de Computação - Bacharelado
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detecção de sonolência em motoristas utilizando processamento de imagens

Thumbnail
Visualizar/Abrir
TCC Samuel Formigheri.pdf (2.750Mb)
Descrição do projeto.mp4 (29.92Mb)
Data
2022-12-14
Autor
Formigheri, Samuel
Orientador
Martinotto, André Luis
Metadata
Mostrar registro completo
Resumo
A sonolência e a fadiga dos motoristas estão entre as maiores causas de acidentes rodoviários graves. Neste sentido, as empresas do setor automobilístico investem fortemente em pesquisas e no desenvolvimento de soluções para a detecção da sonolência em motoristas. Porém, frequentemente, essas soluções utilizam-se de sensores caros ficando restritas aos carros topo de linha. Assim, neste trabalho foi desenvolvido um sistema de baixo custo para a detecção de sonolência em motoristas. Esse é um sistema não intrusivo baseado na utilização de um smartphone para a captura de imagens do motorista. Após captura, é realizado um pré-processamento da imagem onde é utilizado o método de interpolação pelo vizinho mais próximo para uma redução das dimensões da mesma. A detecção da face é realizada através da utilização do Classificador Haar. O reconhecimento dos olhos e a classificação (abertos ou fechados) é realizada através de uma rede neural convolucional do tipo BlazeFace. Por fim, a definição do estado de sonolência é rea lizada através da métrica de percentual de fechamento dos olhos esquerdo e direito (PERCLOS - Percentage of Closure). O sistema desenvolvido mostrou-se viável, apresentando resultados satisfatórios, com um baixo tempo de exeução. Esse apresentou uma precisão média de 98, 61% em ambientes com iluminação normal e sem obstáculos ocultando mais de uma característica da face. O tempo total de processamento de um frame foi de aproximadamente 343, 5 ms em um Galaxy M20 e de 429 ms em iPhone 8, sendo assim, o sistema é capaz de analisar de 2 a 3 frames por segundo em um dispositivo intermediário. [resumo fornecido pelo autor]
URI
https://youtu.be/U0TpZNzqfqc
https://repositorio.ucs.br/11338/12048
Collections
  • Engenharia de Computação - Bacharelado [11]

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

Minha conta

EntrarCadastro

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV