• português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • Entrar
Ver item 
  •   Página inicial
  • Teses, Dissertações e Relatórios
  • Teses, Dissertações e Relatórios defendidos na UCS
  • Programa de Pós-Graduação em Engenharia e Ciência dos Materiais
  • Mestrado Acadêmico em Engenharia e Ciência dos Materiais
  • Ver item
  •   Página inicial
  • Teses, Dissertações e Relatórios
  • Teses, Dissertações e Relatórios defendidos na UCS
  • Programa de Pós-Graduação em Engenharia e Ciência dos Materiais
  • Mestrado Acadêmico em Engenharia e Ciência dos Materiais
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contribuição para o desenvolvimento de um software de diagnóstico baseado em sensores magnetoelásticos

Thumbnail
Visualizar/Abrir
Dissertação Alessandro Josue da Silva Andreatta.pdf (2.320Mb)
Data
2024-07-15
Autor
Andreatta, Alessandro Josue da Silva
Orientador
Zorzi, Janete Eunice
Metadata
Mostrar registro completo
Resumo
Nas últimas décadas, ocorreram várias epidemias de vírus mortais com grande impacto na saúde pública global. Exemplos incluem o Ebola, o Marburg, o Nipah, o Zika, a febre hemorrágica da Crimeia-Congo, Dengue e, mais recentemente, o coronavírus SARS-CoV-2, que causou a pandemia de COVID-19. A rápida disseminação desses vírus e a falta de infraestrutura de saúde adequada em algumas regiões tornaram difícil conter as epidemias. A mobilização global foi necessária para conter a disseminação e fornecer assistência médica adequada às pessoas afetadas. A detecção rápida e o desenvolvimento de medicamentos e vacinas eficazes são cruciais para combater futuras epidemias. Sensores feitos com materiais magnetoelásticos e modelos de aprendizado de máquina podem ser úteis nessa corrida. Neste trabalho, a análise de um conjunto de dados coletados em um analisador de rede, a partir de sensores magnetoelásticos, foi utilizada para treinar um algoritmo de aprendizado de máquina. Um modelo de classificação foi desenvolvido para se obter o diagnóstico correto da presença de patógenos nos sensores de teste, com a exportação do mesmo para uso em dados externos. O modelo desenvolvido foi capaz de distinguir entre dados de controle e de teste, demonstrando precisão na identificação da presença de patógenos. A aplicação de aprendizado de máquina permitiu a detecção de pequenas variações nos sinais dos sensores, permitindo o uso para diagnóstico. A quantidade de dados disponíveis para o treinamento do modelo limitou parcialmente o aprofundamento da análise, não comprometendo, contudo, a técnica aplicada. [resumo fornecido pelo autor]
URI
https://repositorio.ucs.br/11338/13541
Collections
  • Mestrado Acadêmico em Engenharia e Ciência dos Materiais [159]

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

Minha conta

EntrarCadastro

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV