• português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • Entrar
Ver item 
  •   Página inicial
  • Teses, Dissertações e Relatórios
  • Teses, Dissertações e Relatórios defendidos na UCS
  • Programa de Pós-Graduação em Engenharia de Produção
  • Mestrado Profissional em Engenharia de Produção
  • Ver item
  •   Página inicial
  • Teses, Dissertações e Relatórios
  • Teses, Dissertações e Relatórios defendidos na UCS
  • Programa de Pós-Graduação em Engenharia de Produção
  • Mestrado Profissional em Engenharia de Produção
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Desenvolvimento de algoritmo adaptável utilizando redes neurais artificiais para previsão de demanda

Thumbnail
Visualizar/Abrir
Dissertacao Sidimar Capitanio.pdf (1.538Mb)
Data
2019-11-13
Autor
Capitanio, Sidimar
Orientador
Camargo, Maria Emilia
Metadata
Mostrar registro completo
Resumo
A previsão de demanda é uma ferramenta importante para qualquer setor do mercado de trabalho, com a qual as organizações fazem sua gestão e planejamento baseando-se na predição futura de suas variáveis envolvidas. A previsão de demanda possui variadas formas e métodos de gerar uma predição, portanto, o presente trabalho tem como objetivo o desenvolvimento de um algoritmo de previsão de demanda adaptável aos dados das organizações, podendo-se modelar e atribuir variáveis do processo que influenciam diretamente na predição. O modelo de previsão é baseado em uma abordagem de aprendizado de máquina, que se deu com o desenvolvimento de uma Rede Neural Artificial (RNA), a qual para o seu treinamento de aprendizagem supervisionada foram utilizados dados históricos de empresas do segmento moveleiro, dólar americano e consumo de energia elétrica do estado do Rio Grande do Sul, combinados com dados de indicadores econômicos como PIB, SELIC, TR, entre outros para que o algoritmo possa encontrar um padrão de relacionamento na base de dados e prever a demanda com maior acurácia. O modelo da previsão do dólar resultou em um menor erro mape em relação as demais previsões, sendo o erro obtido de 1,06%. Este baixo erro deu-se também pela base de dados maior, fazendo com que a rede se adaptasse com maior eficácia ao histórico e indicadores utilizados. A previsão do consumo de energia elétrica obteve um erro mape de 2,15% e para o banco de dados menor que é a previsão de consumo de chapas de MDF da fábrica moveleira resultou em um erro de 3,85%.
URI
https://repositorio.ucs.br/11338/5144
Collections
  • Mestrado Profissional em Engenharia de Produção [53]

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

Minha conta

EntrarCadastro

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV