• português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • Entrar
Ver item 
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Engenharias
  • Engenharia de Computação - Bacharelado
  • Ver item
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Engenharias
  • Engenharia de Computação - Bacharelado
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sistema automático de detecção do sono utilizando células de carga

Thumbnail
Visualizar/Abrir
TCC Lucas Moraes dos Santos.pdf (4.952Mb)
Data
2019-08-26
Autor
Santos, Lucas Moraes dos
Orientador
Adami, André Gustavo
Metadata
Mostrar registro completo
Resumo
A qualidade do sono de uma pessoa está diretamente associada à sua saúde. Em vista disso, o monitoramento do sono é um excelente recurso para o diagnóstico e acompanhamento de diversas doenças. A polissonografia, padrão-ouro para monitoramento do sono, é amplamente utilizado em clínicas especializadas em medicina do sono. Porém, por ser um método intrusivo e caro, sua utilização contínua e a longo prazo torna-se inviável. Atualmente, existem diversas técnicas de monitoramento do sono, não-intrusivas, em estudo e desenvolvimento. Elas buscam remover a necessidade de intervenção do usuário ao dispositivo. Uma dessas técnicas faz o uso de células de carga posicionadas sob os suportes da cama, como um método alternativo e não- intrusivo para monitoramento do sono. A partir dos sinais adquiridos, podem ser extraídas informações sobre o ritmo respiratório, ritmo cardíaco e os movimentos da pessoa, informações estas que podem auxiliar no processo de detecção do sono. Diante do exposto, o presente trabalho apresenta o desenvolvimento de um sistema de detecção do sono baseado em aprendizado de máquina, capaz de determinar se um indivíduo está no estado de vigília ou sono, a partir de medições advindas de células de carga acopladas aos suportes do leito. O sistema foi avaliado com base nos resultados obtidos para 39 pacientes, resultando em uma sensitividade (classe acordado) de 50,1% e especificidade (classe dormindo) de 53,1%. Após aplicação de um filtro mediana sobre o sinal advindo da classificação, houve um aumento de 2,8% na sensitividade que ficou em 51,5%, enquanto na especificidade obteve-se 54,8%, que representa um aumento de 3,2% (sic).
URI
https://repositorio.ucs.br/11338/6321
Collections
  • Engenharia de Computação - Bacharelado [13]

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

Minha conta

EntrarCadastro

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV