• português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • Entrar
Ver item 
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Ciências Exatas e da Terra
  • Ciência da Computação - Bacharelado
  • Ver item
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Ciências Exatas e da Terra
  • Ciência da Computação - Bacharelado
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aprendizado por reforço no ambiente de jogos

Thumbnail
Visualizar/Abrir
TCC Jonatan Amaral da Silva.pdf (3.726Mb)
Descrição do projeto.mp4 (19.40Mb)
Data
2024-08-12
Autor
Silva, Jonatan Amaral da
Orientador
Webber, Carine Geltrudes
Metadata
Mostrar registro completo
Resumo
A Inteligência artificial (IA) tem se tornado uma presença cada vez mais constante em nosso cotidiano, com aplicações que abrangem desde chatbots e carros autônomos até reconhecimento de imagem e jogos. A IA tem sido objeto de estudo e reflexões desde a década de 1950, quando Turing propôs o Teste de Turing, também conhecido como Jogo da Imitação. Este teste provocou um debate sobre a capacidade das máquinas de pensar e os limites da inteligência computacional. Nesse contexto, os jogos surgem como um domínio intrigante para a IA, oferecendo um ambiente rico para exploração. Com regras definidas e de fácil compreensão, assim dispensando a necessidade de um especialista, permitindo a participação de pessoas comuns em experimentos e treinos. Dentre os diferentes paradigmas de aprendizado em IA, o Aprendizado por Reforço (AR) se destaca. Este tipo de aprendizado tem a capacidade de aprender diretamente através da interação com o ambiente, sem a necessidade de amostragem. Essa habilidade de tomar decisões em ambientes incertos é uma vantagem significativa, especialmente no ambiente complexo dos jogos eletrônicos. Um exemplo notável de algoritmo de AR é o Q-Learning. Este algoritmo se destaca por não exigir um modelo prévio do ambiente, permitindo um aprendizado direto a partir da experiência acumulada. Para implementação de modelo de IA capaz de aprender a jogar o jogo Pong de forma autônoma, foi utilizado o algoritmo Dueling Deep Q-networks (DDQN) na linguagem pyhton, que é uma evolução do Deep Q-networks (DQN), que combina o Q-Learning e redes neurais profundas em conjunto com a biblioteca gymnasium. Como resultado o modelo chega ao ponto de sempre ganhar, conseguindo atingir a pontuação final máxima de 21 pontos e equiparando aos melhores resultados dos trabalhos relacionados. Esses avanços na aplicação de IA e AR em jogos eletrônicos não apenas demonstram o potencial dessas técnicas, mas também abrem caminho para novas possibilidades de pesquisa e desenvolvimento, contribuindo significativamente para o avanço contínuo da IA e AR nesse campo dinâmico. [resumo fornecido pelo autor]
URI
https://repositorio.ucs.br/11338/13649
https://youtu.be/EJDXiCnRy70
Collections
  • Ciência da Computação - Bacharelado [183]

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

Minha conta

EntrarCadastro

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV