• português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • Entrar
Ver item 
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Engenharias
  • Engenharia Elétrica - Bacharelado
  • Ver item
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Engenharias
  • Engenharia Elétrica - Bacharelado
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identificador e classificador de padrões musculares em pessoas com anomalias no joelho utilizando rede neural Perceptron

Visualizar/Abrir
TCC Micael Salvador Bortolozo.pdf (1.829Mb)
Data
2019-12-11
Autor
Bortolozo, Micael Salvador
Orientador
Marques, Patric Janner
Metadata
Mostrar registro completo
Resumo
Segundo levantamento realizado pela organização mundial da saúde, a população idosa é estimada para aproximadamente dois bilhões de pessoas até 2050. Quedas são um problema recorrente para essa população. Estima-se em aproximadamente 32% a 42% de pessoas com mais de 70 anos que sofrem ao menos uma queda ao ano. Análises laboratoriais vem demonstrando que doenças crônico-degenerativas, como disfunções nos joelhos, são recorrentes no sistema moto-sensorial de idosos. Com isso, o intuito do trabalho será o desenvolvimento de um classificador, utilizando uma rede neural artificial multicamada Perceptron, o qual será responsável por classificar os dados coletados de um eletromiografo localizado nos membros inferiores do paciente. Para a rede neural, serão realizados testes com o intuito de escolher as quantidades de neurônios para a camada camadas ocultas. Antes de alimentar a rede neural, os sinais serão filtrados por um filtro Butterworth de quarta ordem na faixa de 0,5 a 500 Hz para a eliminação do sinal DC e ruído de alta frequência dos eletrodos, em seguida os sinais serão segmentados em janelas de 250 ms, e posteriormente normalizados, para treinamento da rede será utilizado um algoritmo backpropagation. Após a etapa de treinamento a rede será testada com dados diferentes dos utilizados para treino, no intuito de diferenciar o padrão muscular de indivíduos com e sem disfunções nos joelhos (sic).
URI
https://repositorio.ucs.br/11338/6149
Collections
  • Engenharia Elétrica - Bacharelado [77]

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

Minha conta

EntrarCadastro

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV