Química de superfície e atrito em nanoescala do aço-carbono AISI 1045 nitretado e pós-oxidado a plasma
Fecha
2014-06-23Autor
Freislebem, Márcia
Orientador
Figueroa, Carlos Alejandro
Metadatos
Mostrar el registro completo del ítemResumen
Este trabalho apresenta uma interpretação química quantitativa do atrito nas
camadas mais externas do aço AISI 1045 nitretado e pós-oxidado com diferentes tempos
de oxidação (0, 1, 5, 10, 20 e 30 min). A caracterização da morfologia, microestrutura,
espessura e composição química qualitativa das camadas nitretadas e pós-oxidadas foi
realizada por microscopia eletrônica de varredura (MEV) e espectroscopia de emissão
óptica por descarga luminescente (GD-OES). A estrutura cristalina presente nas camadas
mais superficiais das amostras foi identificada por difração de raios X (DRX), empregando
ângulo rasante. Na camada nitretada, as amostras apresentam as fases de nitretos g’-Fe4N
e e-Fe2-3N, enquanto que na camada oxidada há uma combinação das fases µ-Fe2O3 e Fe3O4
ou somente a fase Fe3O4 (amostra pós-oxidada por 1 min). A nanodureza foi obtida através
de indentações de baixa penetração (até 200 nm). O módulo de elasticidade reduzido, a
rugosidade superficial e o coeficiente de atrito (CoF) foram obtidos por ensaios de
deslizamento unidirecional, utilizando o equipamento nanoindentador Nanotest-600 da
MicroMaterials. O regime de deformação provocado por esses ensaios foi identificado
através do cálculo do índice de plasticidade (Y). As amostras apenas nitretada e a pósoxidada
durante 1 min apresentaram resultados constantes, dentro do erro experimental e
da faixa de profundidade analisada (entre 100 e 200 nm), das propriedades tais como
dureza, módulo elástico reduzido, rugosidade e índice de plasticidade, porém com
coeficientes de atrito (CoF) diferentes. Desta forma, a evolução do CoF em função da
química da superfície pode ser avaliada sem a influência de mudanças nas propriedades
mecânicas mais importantes, que determinam o CoF. Esses resultados experimentais
podem ser explicados usando um modelo baseado na origem fonônica do atrito, que
depende da frequência vibracional característica das camadas mais externas do material. O
modelo apresenta boa concordância com os resultados experimentais, com uma diferença
de 3% entre teoria e prática.