• português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • português (Brasil) 
    • português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • Entrar
Ver item 
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Ciências Exatas e da Terra
  • Ciência da Computação - Bacharelado
  • Ver item
  •   Página inicial
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Ciências Exatas e da Terra
  • Ciência da Computação - Bacharelado
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uso de características significativas em sistema de identificação de língua em música

Thumbnail
Visualizar/Abrir
TCC Douglas Eduardo Slaviero.pdf (2.806Mb)
Data
2022-12-15
Autor
Slaviero, Douglas Eduardo
Orientador
Adami, André Gustavo
Metadata
Mostrar registro completo
Resumo
No decorrer dos anos a indústria da música vem se adaptando e, atualmente, está passando por um estágio de transição. A receita, que tinha seu predomínio em vendas de mídias físicas, passou a ser majoritariamente de serviços de streaming. Com o advento dos serviços de streaming, o modo de consumir e ouvir mídias de áudio se tornou uma experiência além da música. Conteúdos categorizados, gerando recomendações segundo as características e históricos dos usuários, são cada vez mais utilizados. Uma das informações que pode ser utilizada no intuito de categorizar as músicas é a língua. A partir dela é possível explorar mais pontos do seu âmbito, como reconhecimento de locutor e transcrição de letras. Trabalhos de identificação de língua em música, em sua grande maioria, exploram características estáticas do sinal de áudio propostas para o reconhecimento de fala e não o de língua. Visando contornar essa limitação, o objetivo deste trabalho foi avaliar o uso da rede SincNet em um modelo deep learning para fazer a extração de características significativas do sinal de áudio, para ser feita a identifica ção de língua em música. Além disso, este trabalho emprega o uso de diferentes técnicas de processamento de sinais para dirimir informações irrelevantes (por exemplo, som instrumental ou plateia) do sinal de música. Assim, o sistema proposto, primeiramente, remove os segmentos onde a voz cantante não ocorre (segmentação) e em seguida separa o sinal da voz do som instrumental (separação de áudio). O sinal de voz é alimentado na rede deep learning para extração de características e identificação da língua. O sistema proposto foi avaliado em uma base construída a partir das músicas de um serviço de streaming. Os resultados mostraram que as etapas de pré-processamento, segmentação e separação contribuem significativamente para o desempenho do sistema. Além disso, o sistema proposto obteve desempenho superior de aproximadamente 12% em comparação com sistema utilizando características estáticas e mesmas etapas de pré-processamento. [resumo fornecido pelo autor]
URI
https://repositorio.ucs.br/11338/11991
Collections
  • Ciência da Computação - Bacharelado [183]

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV
 

 

Navegar

Todo o repositórioComunidades e ColeçõesPor data do documentoAutoresTítulosAssuntosEsta coleçãoPor data do documentoAutoresTítulosAssuntos

Minha conta

EntrarCadastro

DSpace software copyright © 2002-2016  DuraSpace
Entre em contato | Deixe sua opinião
Theme by 
Atmire NV