• português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • italiano 
    • português (Brasil)
    • English
    • español
    • italiano
    • Deutsch
  • Login
Mostra Item 
  •   DSpace Home
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Engenharias
  • Engenharia Elétrica - Bacharelado
  • Mostra Item
  •   DSpace Home
  • Trabalhos de Conclusão de Curso
  • Área do Conhecimento das Engenharias
  • Engenharia Elétrica - Bacharelado
  • Mostra Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identificação de módulos fotovoltaicos a partir de imagens aéreas com o auxílio de rede neural e visão computacional

Mostra/Apri
TCC Vinicius Alex Dal Magro Peruzzo.pdf (16.26Mb)
Data
2022-12-17
Autore
Peruzzo, Vinicius Alex Dal Magro
Orientador
Severo, Tiago Cassol
Metadata
Mostra tutti i dati dell'item
Abstract
Passados 10 anos da regulamentação do uso de geradores de energia a partir de fontes renováveis, começa a surgir um mercado responsável pela operação e manutenção desses sistemas. A inspeção realizada em sistemas fotovoltaicos demanda tempo e pode oferecer riscos aos trabalhadores envolvidos no processo, visto que envolve possibilidade de acidentes, por exemplo, relacionados à altura das instalações. Assim, um sistema automatizado e baseado em imagens aéreas para realizar a detecção de módulos fotovoltaicos e reduzir tempo e riscos na inspeção foi desenvolvido. O objetivo do trabalho foi desenvolver um algoritmo de processamento de imagens para detecção de módulos fotovoltaicos em imagens aéreas de usinas fotovoltaicas, criando um dataset com imagens de usinas. Cerca de 141 imagens foram feitas, anotando a posição de cada módulo, totalizando 6.228 módulos anotados. Pré-processando as imagens também foi uma etapa de aumento no número de imagens através da inserção de modificações nas imagens originais, totalizando 3533 imagens, usadas na etapa de treinamento da arquitetura, para que houvesse treino com o intuito de conseguir detectar os módulos fotovoltaicos nas imagens aéreas. Após realizar o treinamento aconteceu a etapa de validação, onde foi aplicado o algoritmo de detecção nas imagens aéreas que não foram utilizadas no treinamento, avaliando as métricas que alcançaram o valor de 85,8% para a precisão média. [resumo fornecido pelos autores]
URI
https://repositorio.ucs.br/11338/12158
Collections
  • Engenharia Elétrica - Bacharelado [78]

DSpace software copyright © 2002-2016  DuraSpace
Contattaci | Manda Feedback
Theme by 
Atmire NV
 

 

Ricerca

Tutto DSpaceArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

My Account

LoginRegistrazione

DSpace software copyright © 2002-2016  DuraSpace
Contattaci | Manda Feedback
Theme by 
Atmire NV