Redes neurais aplicadas na previsão das taxas de afretamento por tempo de Platform Supply Vessels no Brasil
Data
2021-02-18Autor
Grzeça, Elielton
Orientador
Mesquita, Alexandre
Metadata
Mostrar registro completoResumo
Durante o processo de exploração e produção de uma bacia petrolífera offshore, além da movimentação do petróleo e derivados, são movimentados os mais diferentes suprimentos necessários à manutenção das atividades. Para prover essa demanda, embarcações do tipo Platform Supply Vessels (PSV) compõem a maior parte da frota brasileira de embarcações de apoio às unidades marítimas. Devido aos altos custos associados às taxas de afretamento destas embarcações, petrolíferas devem considerar estratégias de contratos para se tornarem flexíveis às variações de cenários do mercado, para assim alcançarem um diferencial competitivo. Por conseguinte, a previsão de taxas futuras dos contratos de afretamento tem um papel fundamental. Este estudo apresenta um comparativo do desempenho de diferentes Redes Neurais Artificiais aplicadas nas previsões de taxas de afretamento de contratos por tempo de embarcações PSV no Brasil, considerando fatores associados à sua volatilidade. Nesta dissertação, foram utilizadas 53 variáveis independentes associadas ao mercado offshore nas previsões das taxas de afretamento, e comparados os resultados com previsões utilizando um número reduzido de variáveis através do método de seleção de variáveis com Regressão por Mínimos Quadrados Parciais (PLS). Com a seleção das variáveis de maior importância, foi possível reduzir o número de fatores para 10 nos dois modelos de estudo, para após comparar os resultados com três diferentes redes neurais. Como resultado, obteve-se um melhor desempenho e maior aderência em previsões utilizando Redes Neurais com Memórias de Longo-Curto Prazo (LSTM) em todos os modelos, quando comparada às redes neurais tradicionais na literatura, como as de Função de Base Radial e Perceptron Multicamadas. Também pode-se constatar que em quatro dos seis modelos de predição avaliados, a utilização de técnicas de seleção das variáveis de maior importância apresentou não só redução na complexidade do modelo como também apresentou reduções no Erro Percentual Médio Absoluto. Nas previsões das taxas de afretamento utilizando redes LSTM obteve-se erros inferiores a 3% para as duas classificações de capacidade de embarcações PSV estudadas, com um coeficiente de determinação de 84% no melhor caso [resumo fornecido pelo autor].