Análise textual automática : apreensibilidade e qualidade da informação na área da saúde

Carregando...
Imagem de Miniatura

Data de Submissão

Data de Defesa

2016

Edição

Coorientadores

Editores

Título da Revista

ISSN da Revista

Título de Volume

Editor

Descrição

O acesso facilitado de pessoas e pacientes a fontes de informação sobre saúde ampliou a necessidade de que tais informações disponíveis sejam revisadas e analisadas, principalmente em contextos onde o paciente deve participar da decisão do seu tratamento. A análise textual é caracterizada pela apreensibilidade e a qualidade do conteúdo. A apreensibilidade de um texto trata da facilidade de compreensão. Existem diversas fórmulas utilizadas para avaliá-la (Flesch Reading Ease, SMOG Index, etc.). A qualidade textual, por sua vez, é abordada através de estudos realizados sobre Mineração de Textos. A Mineração de Textos caracteriza-se como um processo que contém diversas técnicas a fim de organizar, descobrir e extrair informações em bases de dados textuais de forma ágil e automática. O objetivo principal deste trabalho foi propor a concepção de uma ferramenta web para avaliar textos em português a partir da fórmula de apreensibilidade Fernández-Huerta e técnicas de classificação (J48, Bayes Net, Naïve Bayes, Support Vector Machines, K-Nearest Neighbors e Multilayer Perceptron). Para atingir o objetivo proposto, coletou-se uma amostra de dados textual composta por textos de sites sobre saúde na internet. O conjunto de dados foi dividido entre dados para treinamento e dados para testes. A fim de proceder com as análises, implementou-se uma ferramenta de plataforma web para apoiar tanto a análise de apreensibilidade quanto de qualidade da informação. Foram realizados testes com o software. Os resultados obtidos foram comparados com classificações realizadas por especialistas humanos. Identificou-se que o algoritmo Naïve Bayes apresentou os melhores resultados na classificação dos dados (89% de acerto). Como conclusão, considera-se que os resultados são promissores e evidenciam a viabilidade de uso de técnicas de aprendizado automático no tratamento de textos da área da saúde (sic).

Resumo

Citação

Avaliação

Revisão

Suplementado Por

Referenciado Por

Campus-Sede

Rua Francisco Getúlio Vargas, 1130
CEP 95070-560 - Caxias do Sul

Todos os campi - Como chegar

Central de Atendimento

Youtube

© 2001-2025 Universidade de Caxias do Sul. Todos os direitos reservados

Youtube