Análise textual automática : apreensibilidade e qualidade da informação na área da saúde
Carregando...
Data de Submissão
Data de Defesa
2016
Edição
Autores
Orientadores
Coorientadores
Editores
Título da Revista
ISSN da Revista
Título de Volume
Editor
Descrição
O acesso facilitado de pessoas e pacientes a fontes de informação sobre saúde ampliou a necessidade de que tais informações disponíveis sejam revisadas e analisadas, principalmente em contextos onde o paciente deve participar da decisão do seu tratamento. A análise textual é caracterizada pela apreensibilidade e a qualidade do conteúdo. A apreensibilidade de um texto trata da facilidade de compreensão. Existem diversas fórmulas utilizadas para avaliá-la (Flesch Reading Ease, SMOG Index, etc.). A qualidade textual, por sua vez, é abordada através de estudos realizados sobre Mineração de Textos. A Mineração de Textos caracteriza-se como um processo que contém diversas técnicas a fim de organizar, descobrir e extrair informações em bases de dados textuais de forma ágil e automática. O objetivo principal deste trabalho foi propor a concepção de uma ferramenta web para avaliar textos em português a partir da fórmula de apreensibilidade Fernández-Huerta e técnicas de classificação (J48, Bayes Net, Naïve Bayes, Support Vector Machines, K-Nearest Neighbors e Multilayer Perceptron). Para atingir o objetivo proposto, coletou-se uma amostra de dados textual composta por textos de sites sobre saúde na internet. O conjunto de dados foi dividido entre dados para treinamento e dados para testes. A fim de proceder com as análises, implementou-se uma ferramenta de plataforma web para apoiar tanto a análise de apreensibilidade quanto de qualidade da informação. Foram realizados testes com o software. Os resultados obtidos foram comparados com classificações realizadas por especialistas humanos. Identificou-se que o algoritmo Naïve Bayes apresentou os melhores resultados na classificação dos dados (89% de acerto). Como conclusão, considera-se que os resultados são promissores e evidenciam a viabilidade de uso de técnicas de aprendizado automático no tratamento de textos da área da saúde (sic).
